

Structural Package for:

Granbois Residence

8440 SE 82nd St Mercer Island, WA 98052

Project No: S230110-1

April 19, 2024

<u>STRUCTURAL ENGINEER</u> L120 ENGINEERING & DESIGN 13150 91ST PL NE KIRKLAND, WA 98034 CONTACT: MANS THURFJELL, PE PHONE: 425-636-3313 MTHURFJELL@L120ENGINEERING.COM

Design Criteria

Project Number:	Plan Name:	Sheet Number:
S230110-1	Granbois	DC
Engineer:	Specifics:	Date:
HK	Design Criteria	4/19/2024

Г

Gravity Criteria:

ROOF SYSTEM							
Live Load:		C					
Snow	25.0	psf					
Dead Load:							
Composite Roofing	2.0	psf					
19/32" Plywood Sheathing	2.5	psf					
Trusses at 24" o.c.	3.0	psf					
Insulation	1.8	psf					
(2) Layers 5/8" GWB	4.4	psf					
Misc/Mech	1.3	psf					
Total	15.0	psf					

EXTERIOR WALL SYSTEM								
2x6 at 16" o.c.	1.7	psf						
Insulation	1.0	psf						
1/2" Plywood Sheathing	1.5	psf						
(2) layers 5/8" GWB	4.4	psf						
Misc	3.4	psf						
Total	12.0	psf						

Live Load:			
Residential	40.0	psf	
Dead Load:			
Flooring	3.0	psf	
3/4" T & G Plywood	2.5	psf	
Floor Joists at 16" o.c.	2.5	psf	
Insulation	0.5	psf	
(1) Layers 5/8" GWB	2.2	psf	
Miscellaneous	1.3	psf	
Total	12.0	psf	

FLOOR SYSTEM

Code: IBC 2018

EXTERIOR WALL SYSTEM W/BRICK								
2x6 at 16" o.c.	1.7							
Insulation	1.0	psf						
1/2" Plywood Sheathing	1.5	psf						
(2) layers 5/8" GWB	4.5	psf						
Brick Cladding	40.0	psf						
Total	47.0	psf						

INTERIOR WALL SYSTEM							
		C					
2x4 at 16" o.c.	1.1	psf					
Insulation	0.5	psf					
(2) Layers 5/8" GWB	4.4	psf					
Misc	2.0	psf					
Total	8.0	psf					

SEISMIC PARAMETERS:

Code Reference: ASCE 7-16

R = **6.5** Bearing Wall System, Wood Structural Panel Walls

Mapped Spectral Acceleration, Ss = 1.64

Mapped Spectral Acceleration, S1 = 0.62

Soil Site Class = **D**

WIND PARAMETERS:

Code Reference: ASCE 7-16

Basic Wind Speed (3 second Gust) = 100 mph Exposure : **B** Kzt = 1.90

SOIL PARAMETERS:

Soil Bearing Pressure = 3,500 psf competent native soil or structural fill 1/3 increase for short-term wind or seismic loading is acceptable Frost Depth = 18 in

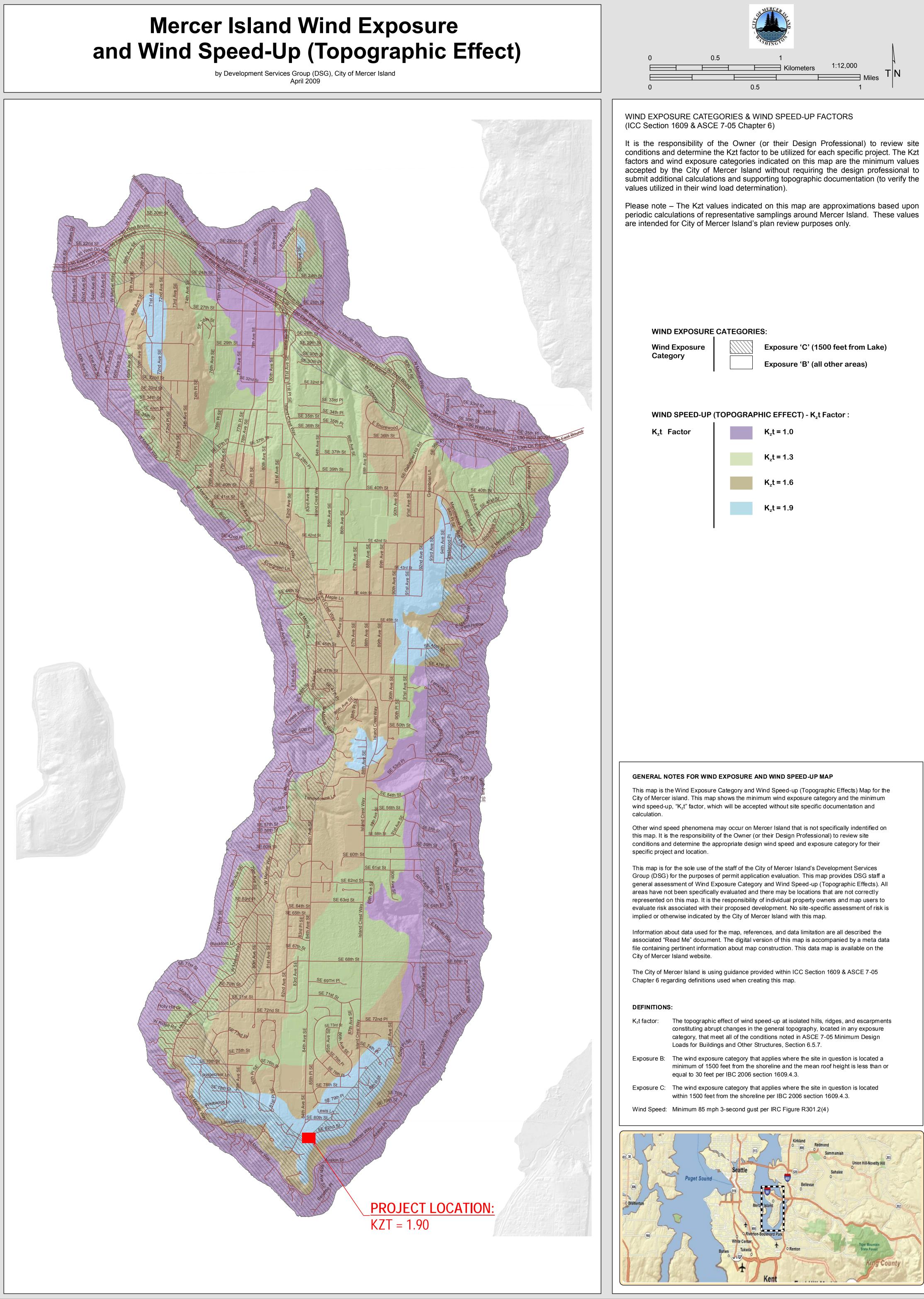
Lateral Wall Pressures:

Unrestrained Active Pressure =35pcfCantilevered wallsRestrained Active Pressure =50pcfPlate Wall Design/Tank WallsPassive Pressure =300pcfSoil Friction Coeff. =0.5

ASCE 7 Hazards Report

Address: 8440 SE 82nd St Mercer Island, Washington 98040 Standard:ASCE/SEI 7-22Risk Category:IISoil Class:Default

Latitude: 47.530412 Longitude: -122.226341 Elevation: 329.5217954889228 ft (NAVD 88)

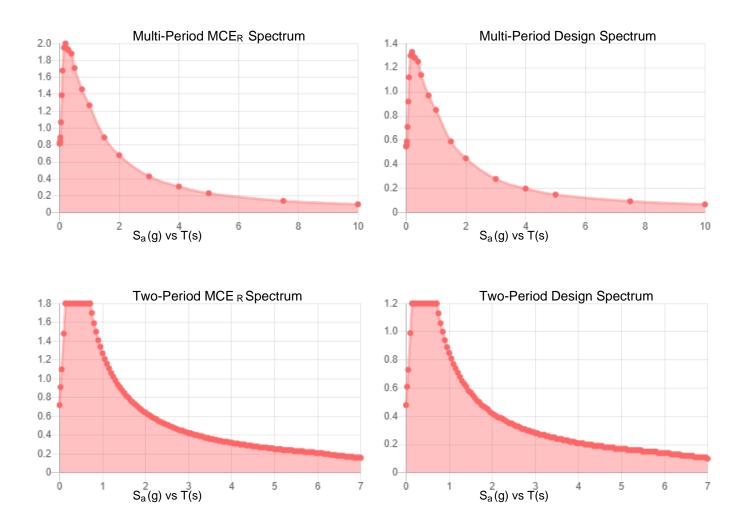

Wind

Results:

	Wind Speed	98 Vmph
	10-year MRI	67 Vmph
	25-year MRI	74 Vmph
	50-year MRI	78 Vmph
	100-year MRI	83 Vmph
	300-year MRI	92 Vmph
	700-year MRI	98 Vmph
	1,700-year MRI	104 Vmph
	3,000-year MRI	109 Vmph
	10,000-year MRI	118 Vmph
	100,000-year MRI	136 Vmph
	1,000,000-year MRI	154 Vmph
Data	a Source:	ASCE/SEI 7-22, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4,

Date Accessed:

ASCE/SEI 7-22, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4,


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-22 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years). Values for 10-year MRI, 25-year MRI, 50-year MRI and 100-year MRI are Service Level wind speeds, all other wind speeds are Ultimate wind speeds.

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-22 Section 26.2.

Default Seismic Site Soil Class: **Results:** $T_{\text{L}} \, : \,$ PGA_M: 0.75 6 S_{MS} : **S**_s : 1.64 1.8 S_{M1} : S₁ : 0.62 1.27 S_{DS} : 1.2 V_{S30} : 260 **S**_{D1} : 0.85

Seismic Design Category: D

 $\label{eq:MCER} \mbox{Vertical Response Spectrum} \\ \mbox{Vertical ground motion data has not yet been made} \\ \mbox{available by USGS.} \\$

Design Vertical Response Spectrum Vertical ground motion data has not yet been made available by USGS.

Data Accessed:

Date Source:

Wed Mar 15 2023

USGS Seismic Design Maps based on ASCE/SEI 7-22 and ASCE/SEI 7-22 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-22 Ch. 21 are available from USGS.

Framing Calculations

Framing member calculation references are shown on structural plans for ease of reference

FORTEWEB[®] JOB SUMMARY REPORT Granbois Residence

Granbois Residence

Roof			
Member Name	Results (Max UTIL %)	Current Solution	Comments
RJ-1	Passed (52% M)	1 piece(s) 2 x 12 DF No.2 @ 16" OC	
2nd Floor			
Member Name	Results (Max UTIL %)	Current Solution	Comments
2H-1	Passed (68% M)	1 piece(s) 4 x 10 DF No.2	
2H-2	Passed (56% M)	1 piece(s) 4 x 8 DF No.2	
2H-3 (Beam Over 2nd floor Slider)	Passed (58% R)	1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam	
2H-3 (Inside Beam Over 2nd floor Slider)	Passed (45% ΔT)	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam	
2J-1 (Long Span)	Passed (56% ΔL)	2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL @ 12" OC	
2J-1	Passed (56% M)	1 piece(s) 11 7/8" TJI ® 210 @ 16" OC	
2J-2	Passed (70% M)	1 piece(s) 11 7/8" TJI ® 210 @ 19.2" OC	
2J-3 (Deck Joist)	Passed (34% M)	1 piece(s) 2 x 6 DF No.2 @ 16" OC	
2J-4	Passed (75% M)	1 piece(s) 2 x 8 DF No.2 @ 16" OC	
2J-5	Passed (62% M)	1 piece(s) 11 7/8" TJI ® 210 @ 19.2" OC	
2J-6	Passed (25% R)	1 piece(s) 11 7/8" TJI ® 210 @ 16" OC	
2B-1 (Beam at the Master deck)	Passed (100% R)	1 piece(s) 7" x 14" 2.2E Parallam® PSL	
2B-2 (Beam under interior Master slider door wall)	Passed (95% ΔL)	1 piece(s) 7" x 11 7/8" 2.2E Parallam® PSL	
2B-2.1 (Beam directly under Master slider door)	Passed (32% R)	1 piece(s) 7" x 14" 2.2E Parallam® PSL	
2B-3	Passed (74% R)	1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL	
2B-4	Passed (85% ΔL)	1 piece(s) 7" x 16" 2.2E Parallam® PSL	
2B-4 (Steel Beam Opt)	Passed (86% ΔL)	1 piece(s) W10X33 (A992) ASTM Steel	
2B-5	Passed (91% ΔT)	1 piece(s) 7" x 11 1/4" 2.2E Parallam® PSL	
2B-6	Passed (87% R)	1 piece(s) 3 1/2" x 11 7/8" 2.2E Parallam® PSL	
2B-7	Passed (78% R)	1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
2B-8	Passed (67% ΔL)	2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
2B-9	Passed (95% ΔT)	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam	
2B-10	Passed (86% M+)	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam	
2B-11	Passed (38% ΔT)	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam	
2B-12	Passed (69% R)	1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
2B-13	Passed (57% ΔL)	2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
2B-14	Passed (35% ΔL)	2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
2B-15	Passed (73% ΔL)	1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
2B-16	Passed (91% R)	1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
2B-17 (Beam over Living Room slider door)	Passed (50% M+)	1 piece(s) 3 1/2" x 15" 24F-V4 DF Glulam	

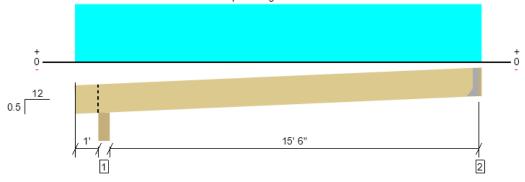
Job Notes

4/19/2024 11:44:29 PM UTC ForteWEB v3.7 File Name: Granbois Residence

1st Floor					1
Member Name	Results (Max UTIL %)	Current Solution		Comments	
1H-1	Passed (69% M)	1 piece(s) 6 x 10 DF No.2			l
1H-2	Passed (71% M)	1 piece(s) 4 x 10 DF No.2			l l
1H-3	Passed (47% M)	1 piece(s) 4 x 6 DF No.2			I
1H-4	Passed (69% R)	1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam			I
1J-1	Passed (67% M)	1 piece(s) 11 7/8" TJI			K
1J-2	Passed (55% M)	1 piece(s) 11 7/8" TJI			,)
1B-1	Failed (100% R)	1 piece(s) 3 1/2" x 11 7/8" 2.2E Parallam® PSL	ξ	An excessive uplift of -2152 lbs at support located at 14' 8 1/2" failed this product.	
1B-2	Failed (100% R)	1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL		Multiple Failures/Errors	\mathbf{A}
1B-3	Failed (100% R)	1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL	3	Multiple Failures/Errors	Uplift resolved via
1B-4	Failed (83% R)	1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL	Ę	An excessive uplift of -5500 lbs at support located at 3' 1" failed this product.	hardware provided per plan. Design OK!
1B-5	Failed (100% R)	1 piece(s) 7" x 16" 2.2E Parallam® PSL	3	Multiple Failures/Errors	R
1B-6	Passed (100% R)	1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL	7		К
1B-7	Passed (100% R)	1 piece(s) 7" x 16" 2.2E Parallam® PSL			
1B-8 (Beam over window well)	Failed (100% R)	1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL	Ę	An excessive uplift of -5771 lbs at support located at 9' 5 1/2" failed this product.	}
1B-9	Passed (72% ΔL)	2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL			l
1B-10	Passed (84% M)	1 piece(s) 7" x 14" 2.2E Parallam® PSL			I
1B-11	Passed (100% R)	1 piece(s) 3 1/2" x 11 7/8" 2.2E Parallam® PSL			I
Basement					I
Member Name	Results (Max UTIL %)	Current Solution		Comments	
1C-1	Passed (58% f_{cp})	1 piece(s) 6 x 8 DF No.1			l
1C-2	Passed (57% B/C)	1 piece(s) 6 x 8 DF No.1			1
Garage					l
Member Name	Results (Max UTIL %)	Current Solution		Comments	
GH-1	Passed (85% R)	1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam			1
GH-2	Passed (75% R)	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam			1

ForteWEB Software Operator
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

Job Notes



4/19/2024 11:44:29 PM UTC ForteWEB v3.7 File Name: Granbois Residence

Roof, RJ-1 1 piece(s) 2 x 12 DF No.2 @ 16" OC

Sloped Length: 17' 1 3/16"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	ber Reaction (lbs) 418 @ 16' 11 1/2" 1406		Passed (30%)		1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	368 @ 16' 1/4"	2329	Passed (16%)	1.15	1.0 D + 1.0 S (Alt Spans)
Moment (Ft-lbs)	1636 @ 9' 1 1/2"	3138	Passed (52%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.160 @ 9' 1 3/16"	0.787	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.256 @ 9' 1 1/4"	1.050	Passed (L/738)		1.0 D + 1.0 S (Alt Spans)

Member Length : 17' 1/8" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0.5/12

• Deflection criteria: LL (L/240) and TL (L/180)

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (Ibs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - HF	5.50"	5.50"	1.50"	183	305	488	Blocking
2 - Hanger on 11 1/4" LSL Ledger	1.50"	Hanger ¹	1.50"	159	266	424	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 2" o/c	
Bottom Edge (Lu)	17' o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Face Mount Hanger	LRU28Z	1.94"	N/A	6-10dx1.5	5-10d				
Defer to manufacturer notes and instructions for proper installation and use of all connectors									

Refer to manufacturer notes and instructions for proper installation and use of all connectors

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 17' 1"	16"	15.0	25.0	Roof Load

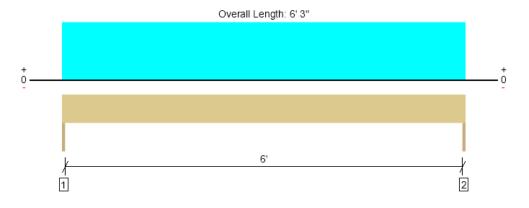
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Harrison Kliegl
 120 Engineering


 (425) 636-3313
 hkliegl@l120engineering.com

4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 3 / 66

2nd Floor, 2H-1 1 piece(s) 4 x 10 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2217 @ 0	3281 (1.50")	Passed (68%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1581 @ 10 3/4"	4468	Passed (35%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	3464 @ 3' 1 1/2"	5102	Passed (68%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.040 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.066 @ 3' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 6' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1.2% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

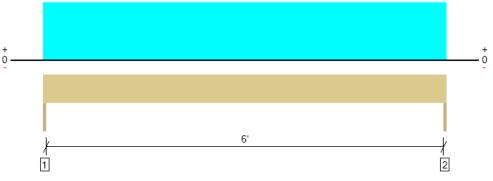
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	889	1328	2217	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	889	1328	2217	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	8.2		
1 - Uniform (PSF)	0 to 6' 3"	17'	16.2	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com	

2nd Floor, 2H-2 1 piece(s) 4 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1230 @ 0	3281 (1.50")	Passed (37%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	943 @ 8 3/4"	3502	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1922 @ 3' 1 1/2"	3405	Passed (56%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.043 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.076 @ 3' 1 1/2"	0.313	Passed (L/987)		1.0 D + 1.0 S (All Spans)

Member Length : 6' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

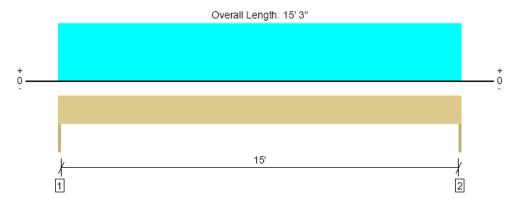
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	527	703	1230	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	527	703	1230	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 6' 3"	9'	18.0	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com	

2nd Floor, 2H-3 (Beam Over 2nd floor Slider) 1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3089 @ 0	5363 (1.50")	Passed (58%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2532 @ 1' 4 1/2"	16761	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	11775 @ 7' 7 1/2"	45914	Passed (26%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.082 @ 7' 7 1/2"	0.508	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.177 @ 7' 7 1/2"	0.762	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 15' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 3.2% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 15' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1659	1430	3089	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1659	1430	3089	None

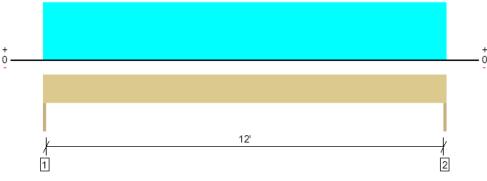
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 15' 3"	N/A	20.0		
1 - Uniform (PSF)	0 to 15' 3"	7' 6"	13.0	25.0	Roof Load
2 - Uniform (PLF)	0 to 15' 3"	N/A	100.0	-	Slider Door if Hanging

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hklieal@l120enaineerina.com	



2nd Floor, 2H-3 (Inside Beam Over 2nd floor Slider) 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

Overall Length: 12' 3"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2009 @ 0	5363 (1.50")	Passed (37%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1722 @ 10 1/2"	10057	Passed (17%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	6153 @ 6' 1 1/2"	16876	Passed (36%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.147 @ 6' 1 1/2"	0.408	Passed (L/997)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.276 @ 6' 1 1/2"	0.613	Passed (L/532)		1.0 D + 1.0 S (All Spans)

Member Length : 12' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1.2% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 12' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

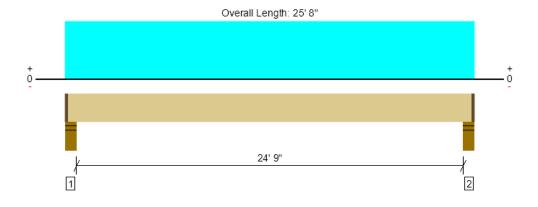
	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	937	1072	2009	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	937	1072	2009	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 3"	N/A	12.0		
1 - Uniform (PSF)	0 to 12' 3"	7'	13.0	25.0	Roof Load
2 - Uniform (PLF)	0 to 12' 3"	N/A	50.0	-	Slider Door if Hanging

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hklieal@120enaineerina.com	

2nd Floor, 2J-1 (Long Span)

2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL @ 12" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	661 @ 4 1/2"	8750 (4.00")	Passed (8%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	592 @ 1' 5 3/8"	7897	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4035 @ 12' 10"	18562	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.349 @ 12' 10"	0.623	Passed (L/857)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.454 @ 12' 10"	1.246	Passed (L/659)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	42	40	Passed		

Member Length : 25' 5" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	5.50"	4.00"	1.50"	154	513	667	1 1/2" Rim Board
2 - Stud wall - DF	5.50"	4.00"	1.50"	154	513	667	1 1/2" Rim Board

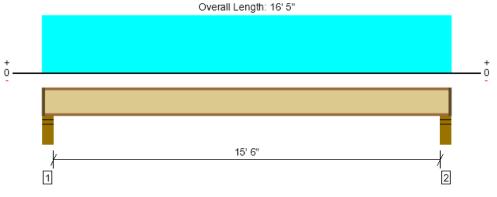
• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	Continuous	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 25' 8"	12"	12.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

2nd Floor, 2J-1 1 piece(s) 11 7/8" TJI ® 210 @ 16" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	560 @ 4 1/2"	1460 (3.50")	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	537 @ 5 1/2"	1655	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2127 @ 8' 2 1/2"	3795	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.216 @ 8' 2 1/2"	0.392	Passed (L/870)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.281 @ 8' 2 1/2"	0.783	Passed (L/669)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	47	40	Passed		

Member Length : 16' 2" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	1.75"	131	438	569	1 1/2" Rim Board
2 - Stud wall - HF	5.50"	4.00"	1.75"	131	438	569	1 1/2" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

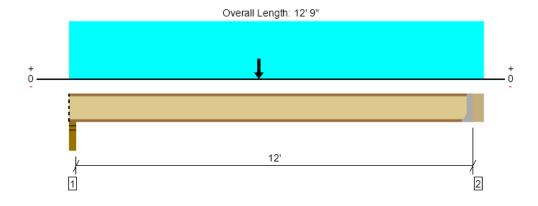
Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' o/c					
Bottom Edge (Lu)	16' 2" o/c					
TTT inite and and and other Maximum Allowable burning adultion						

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 16' 5"	16"	12.0	40.0	Floor Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Note:
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hklieal@l120enaineerina.com	

2nd Floor, 2J-2 1 piece(s) 11 7/8" TJI ® 210 @ 19.2" OC

PASSED

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	662 @ 12' 3 1/2"	1005 (1.75")	Passed (66%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	669 @ 3 1/2"	1655	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3042 @ 6'	4364	Passed (70%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.131 @ 6'	0.302	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.232 @ 6'	0.604	Passed (L/625)		1.0 D + 0.75 L + 0.75 S (All Spans)
TJ-Pro [™] Rating	52	40	Passed		

Member Length : 12' 3 1/2" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.75"	293	400	187	734	Blocking
2 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	1.75" / - 2	284	416	173	726	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	4' 2" o/c					
Bottom Edge (Lu)	12' 4" o/c					

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	IUS2.06/11.88	2.00"	N/A	10-10dx1.5	2-Strong-Grip		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location	Spacing	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to 12' 9"	19.2"	12.0	40.0	-	Floor Load
2 - Point (PLF)	6'	19.2"	208.0	-	225.0	DL = 12 psf * 9ft + 100 plf LL = 25 psf * 9 ft

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

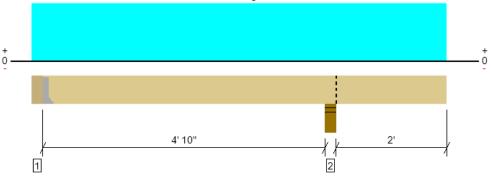
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Harrison Kliegl
L120 Engineering
(425) 636-3313
hkliegl@I120engineering.com

Job Notes



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 11 / 66

2nd Floor, 2J-3 (Deck Joist) 1 piece(s) 2 x 6 DF No.2 @ 16" OC

Overall Length: 7' 9"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	242 @ 5 1/2"	1406 (1.50")	Passed (17%)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Shear (lbs)	224 @ 4' 10"	990	Passed (23%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	288 @ 2' 10 7/8"	848	Passed (34%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.036 @ 2' 11 7/8"	0.127	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.052 @ 7' 9"	0.223	Passed (2L/999+)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

Member Length : 7' 3 1/2" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 5 1/2" DF beam	5.50"	Hanger ¹	1.50"	40	239/-3	91	288	See note 1
2 - Stud wall - DF	5.50"	5.50"	1.50"	84	420	175	530	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	Continuous	
Bottom Edge (Lu)	End Bearing Points	

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LU26	1.50"	N/A	6-10dx1.5	4-10dx1.5	
- Defer to manufacturer notes and instructions for proper installation and use of all connectors						

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

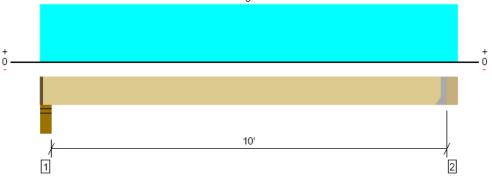
			Dead	Floor Live	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 7' 9"	16"	12.0	60.0	25.0	Deck Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Kliegl L120 Engineering (425) 636-3313 hKliegl@I120engineering.com



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 12 / 66

2nd Floor, 2J-4 1 piece(s) 2 x 8 DF No.2 @ 16" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	403 @ 10' 5 1/2"	1406 (1.50")	Passed (29%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	355 @ 9' 10 1/4"	1305	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1017 @ 5' 5"	1360	Passed (75%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.163 @ 5' 5"	0.252	Passed (L/743)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.244 @ 5' 5"	0.504	Passed (L/496)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

Member Length : 10' 4" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	5.50"	4.00"	1.50"	144	289	433	1 1/2" Rim Board
2 - Hanger on 7 1/4" DF beam	5.50"	Hanger ¹	1.50"	147	293	440	See note 1

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	Continuous	
Bottom Edge (Lu)	End Bearing Points	

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	LU26	1.50"	N/A	6-10dx1.5	4-10dx1.5		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

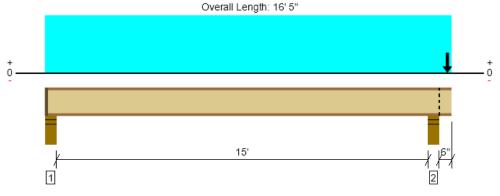
			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 10' 11"	16"	20.0	40.0	Walk-in Shower Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes
Harrison Kliegl
L120 Engineering
(425) 636-3313
hkliegl@I120engineering.com



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 13 / 66

2nd Floor, 2J-5 1 piece(s) 11 7/8" TJI ® 210 @ 19.2" OC

PASSED

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	646 @ 4 1/2"	1460 (3.50")	Passed (44%)	1.00	1.0 D + 1.0 L (Alt Spans)
Shear (lbs)	619 @ 5 1/2"	1655	Passed (37%)	1.00	1.0 D + 1.0 L (Alt Spans)
Moment (Ft-lbs)	2351 @ 7' 10 11/16"	3795	Passed (62%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.233 @ 8' 3/8"	0.383	Passed (L/787)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.292 @ 7' 11 13/16"	0.766	Passed (L/629)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro [™] Rating	43	40	Passed		

Member Length : 16' 3 1/2" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Overhang deflection criteria: LL (2L/480) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser EdgeTM Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supp				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	5.50"	4.00"	1.75"	143	514	-11	657	1 1/2" Rim Board
2 - Stud wall - DF	5.50"	5.50"	3.50"	477	538	312	1114	Blocking

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	4' 9" o/c				
Bottom Edge (Lu)	8' 8" o/c				
aTTI jojete pro oply poplyzed ucing Movimum Allowable bracing colutions					

TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 16' 5"	19.2"	12.0	40.0	-	Floor Load
2 - Point (PLF)	16' 3"	19.2"	100.0	-	-	Wall Load Above
3 - Point (PLF)	16' 3"	19.2"	90.0	-	188.0	DL = 12 psf * 7.5 SL = 25 psf * 7.5

Weyerhaeuser Notes

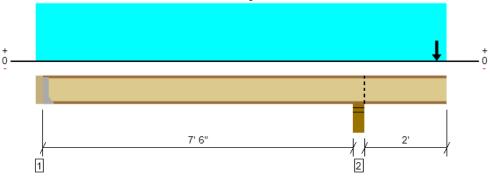
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Harrison Kliegl
 L120 Engineering

 (425) 636-3313
 hkliegl@I120engineering.com



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 14 / 66

2nd Floor, 2J-6 1 piece(s) 11 7/8" TJI ® 210 @ 16" OC

Overall Length: 10' 3"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	632 @ 8' 1/4"	2565 (5.25")	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	288 @ 8' 3"	1655	Passed (17%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	-468 @ 8' 1/4"	3795	Passed (12%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.018 @ 4' 1 7/8"	0.193	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.021 @ 10' 3"	0.223	Passed (2L/999+)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
TJ-Pro [™] Rating	65	40	Passed		

Member Length : 9' 11 1/2" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Overhang deflection criteria: LL (2L/480) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 11 7/8" LVL beam	3.50"	Hanger ¹	1.75" / - 2	23	222/-2	-9	245	See note 1
2 - Stud wall - DF	5.50"	5.50"	3.50"	290	342	42	632	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

 \bullet $\ensuremath{^1}$ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 8" o/c	
Bottom Edge (Lu)	8' 8" o/c	
Bottom Edge (Lu)		

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-T	Гie					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS2.06/11.88	2.00"	N/A	10-10dx1.5	2-Strong-Grip	
	· · · · · · ·	C 11 1				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 10' 3"	16"	12.0	40.0	-	Floor Load
2 - Point (PLF)	10'	16"	100.0	-	-	Wall Load Above
3 - Point (PLF)	10'	16"	12.0	-	25.0	DL = 12 psf * 1 ft SL = 25 psf * 1 ft

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

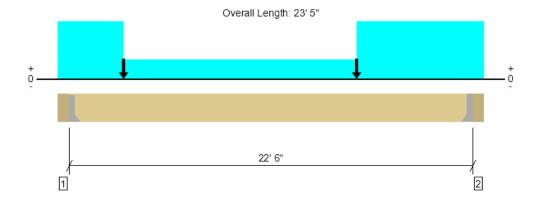
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Harrison Kliegl
L120 Engineering
(425) 636-3313
hkliegl@I120engineering.com

Job Notes



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 16 / 66

2nd Floor, 2B-1 (Beam at the Master deck) 1 piece(s) 7" x 14" 2.2E Parallam® PSL

PASSED

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8496 @ 22' 11 1/2"	8496 (1.94")	Passed (100%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	7539 @ 21' 9 1/2"	21789	Passed (35%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	38160 @ 14' 9 1/8"	62472	Passed (61%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.513 @ 11' 10 1/4"	0.563	Passed (L/526)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	1.056 @ 11' 11 7/8"	1.125	Passed (L/256)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 22' 6" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

Bearing Length				Loads to Sup			
Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
5.50"	Hanger ¹	1.88"	4724	2108	3053	8594	See note 1
5.50"	Hanger ¹	1.94"	5128	2108	2865	8858	See note 1
	Total 5.50"	Total Available 5.50" Hanger1	Total Available Required 5.50" Hanger1 1.88"	Total Available Required Dead 5.50" Hanger1 1.88" 4724	Total Available Required Dead Floor Live 5.50" Hanger1 1.88" 4724 2108	Total Available Required Dead Floor Live Snow 5.50" Hanger1 1.88" 4724 2108 3053	Total Available Required Dead Floor Live Snow Factored 5.50" Hanger1 1.88" 4724 2108 3053 8594

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	22' 6" o/c					
Bottom Edge (Lu) 22' 6" o/c						
Maximum allowable bracing intervals based on applied load.						

app

Harrison Kliegl

L120 Engineering (425) 636-3313

hkliegl@I120engineering.com

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	HGUS7.25/10	4.00"	N/A	46-16d	16-16d		
2 - Face Mount Hanger	HGUS7.25/10	4.00"	N/A	46-16d	16-16d		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/2" to 22' 11 1/2"	N/A	30.6			
1 - Uniform (PSF)	0 to 23' 5" (Back)	3'	15.0	60.0	25.0	Deck Load
2 - Point (Ib)	3' 6" (Top)	N/A	1659	-	1430	Linked from: 2H-3 (Beam Over 2nd floor Slider), Support 1
3 - Point (Ib)	16' 6" (Top)	N/A	1659	-	1430	Linked from: 2H-3 (Beam Over 2nd floor Slider), Support 2
4 - Uniform (PLF)	0 to 3' 6" (Top)	N/A	460.0	-	125.0	DL = 12 psf * 5ft + 400 plf SL = 25 psf * 5
5 - Uniform (PLF)	16' 6" to 23' 5" (Top)	N/A	460.0	-	125.0	DL = 12 psf * 5ft + 400 plf SL = 25 psf * 5
ForteWEB Software Opera	tor Jo	b Notes				

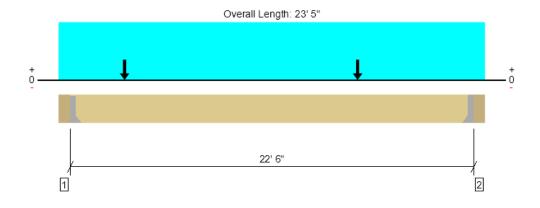
Weyerhaeuser

4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 17 / 66

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com Job Notes

4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 18 / 66

2nd Floor, 2B-2 (Beam under interior Master slider door wall) 1 piece(s) 7" x 11 7/8" 2.2E Parallam® PSL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4306 @ 5 1/2"	6563 (1.50")	Passed (66%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3613 @ 1' 5 3/8"	16071	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	20121 @ 12' 3 7/16"	39805	Passed (51%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.535 @ 11' 9 5/8"	0.563	Passed (L/504)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.962 @ 11' 9 7/8"	1.125	Passed (L/281)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 22' 6" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	1.50"	1969	1990	1235	4388	See note 1
2 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	1.50"	1684	1990	909	3859	See note 1
At barger supports the Total Barring dimension is graught to the with of the matrial that is supporting the barger								

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	22' 6" o/c				
Bottom Edge (Lu)	22' 6" o/c				
Maximum allowable bracing intervals based on applied load.					

app

Connector: Simpson Strong-Tie							
Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
HGUS7.25/8	4.00"	N/A	36-10d	12-10d			
HHUS7.25/10	3.31"	N/A	30-10d	10-10d			
	HGUS7.25/8	HGUS7.25/8 4.00" HHUS7.25/10 3.31"	HGUS7.25/8 4.00" N/A HHUS7.25/10 3.31" N/A	HGUS7.25/8 4.00" N/A 36-10d HHUS7.25/10 3.31" N/A 30-10d	HGUS7.25/8 4.00" N/A 36-10d 12-10d HHUS7.25/10 3.31" N/A 30-10d 10-10d		

Weyerhaeuser

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

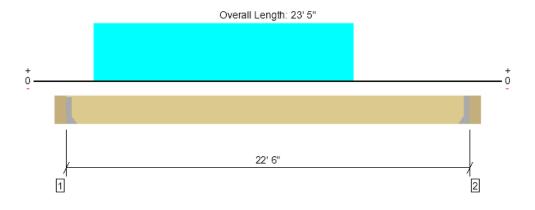
			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/2" to 22' 11 1/2"	N/A	26.0			
1 - Uniform (PSF)	0 to 23' 5" (Front)	4' 3"	12.0	40.0	-	Floor Load
2 - Point (lb)	3' 6" (Top)	N/A	937	-	1072	Linked from: 2H-3 (Inside Beam Over 2nd floor Slider), Support 1
3 - Point (lb)	16' 6" (Top)	N/A	937	-	1072	Linked from: 2H-3 (Inside Beam Over 2nd floor Slider), Support 2

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator
Harrison Kliegl L120 Engineering
(425) 636-3313
hkliegl@l120engineering.com

Job Notes

4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 20 / 66

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2111 @ 5 1/2"	6563 (1.50")	Passed (32%)		1.0 D (All Spans)
Shear (lbs)	2076 @ 1' 7 1/2"	17052	Passed (12%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	12456 @ 10' 11 3/8"	48891	Passed (25%)	0.90	1.0 D (All Spans)
Live Load Defl. (in)	0.000 @ 5 1/2"	0.563	Passed (L/999+)		1.0 D (All Spans)
Total Load Defl. (in)	0.326 @ 11' 5 5/8"	1.125	Passed (L/828)		1.0 D (All Spans)

Member Length : 22' 6" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length				Supports os)	
Supports	Total	Available	Required	Dead	Factored	Accessories
1 - Hanger on 14" PSL beam	5.50"	Hanger ¹	1.50"	2111	2111	See note 1
2 - Hanger on 14" PSL beam	5.50"	Hanger ¹	1.50"	1478	1478	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	22' 6" o/c						
Bottom Edge (Lu)	22' 6" o/c						
Maximum allowable bracing intervals based on applied load							

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	HU410-2	2.50"	N/A	18-16d	8-16d				
2 - Face Mount Hanger	HU410-2	2.50"	N/A	18-10dx1.5	8-10d				

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	Comments
0 - Self Weight (PLF)	5 1/2" to 22' 11 1/2"	N/A	30.6	
1 - Uniform (PLF)	2' to 16' 6" (Top)	N/A	200.0	Slider Door above

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Harrison Kliegl
 L120 Engineering

 (425) 636-3313
 hkliegl@1120engineering.com



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 21 / 66

2nd Floor, 2B-3 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

Overall Length: 6' 5"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	13348 @ 6' 1"	18047 (5.50")	Passed (74%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	4340 @ 4' 11 5/8"	12053	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	7057 @ 4'	29854	Passed (24%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.015 @ 4'	0.144	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.034 @ 4'	0.287	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 6' 5" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Supp				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories	
1 - Column Cap - steel	5.50"	5.50"	1.50"	1225	892	447	2230	Blocking	
2 - Column Cap - steel	5.50"	5.50"	4.07"	7807	3548	3841	13348	Blocking	
Placking Danols are assumed to carry no los	Blocking Papels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed								

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 5" o/c	
Bottom Edge (Lu)	6' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 5"	N/A	19.5			
1 - Uniform (PSF)	0 to 6' 5" (Front)	1' 4"	12.0	40.0	-	Floor Load
2 - Point (Ib)	6' (Front)	N/A	4724	2108	3053	Linked from: 2B-1 (Beam at the Master deck), Support 1
3 - Point (lb)	4' (Front)	N/A	1969	1990	1235	Linked from: 2B-2 (Beam under the Master slider door), Support 1
4 - Point (lb)	5' (Front)	N/A	2111	-	-	Linked from: 2B- 2.1 (Beam directly under Master slider door), Support 1

Weyerhaeuser Notes

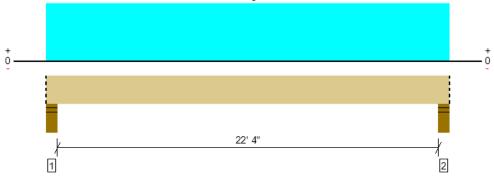
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Harrison Kliegl
 L120 Engineering

 (425) 636-3313
 hkliegl@I120engineering.com



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 22 / 66

2nd Floor, 2B-4 1 piece(s) 7" x 16" 2.2E Parallam® PSL

Overall Length: 23' 3"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6603 @ 4"	15593 (5.50")	Passed (42%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	5585 @ 1' 9 1/2"	21653	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	36210 @ 11' 7 1/2"	69909	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.481 @ 11' 7 1/2"	0.565	Passed (L/564)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.666 @ 11' 7 1/2"	1.129	Passed (L/407)		1.0 D + 1.0 L (All Spans)

Member Length : 23' 3" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length			Load	ls to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories	
1 - Stud wall - HF	5.50"	5.50"	2.33"	1837	4766	6603	Blocking	
2 - Stud wall - HF	5.50"	5.50"	2.33"	1837	4766	6603	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

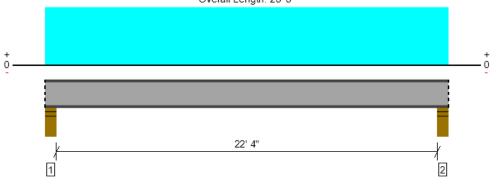
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	23' 3" o/c	
Bottom Edge (Lu)	23' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 23' 3"	N/A	35.0		
1 - Uniform (PSF)	0 to 23' 3" (Front)	10' 3"	12.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com	

2nd Floor, 2B-4 (Steel Beam Opt) 1 piece(s) W10X33 (A992) ASTM Steel

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6580 @ 4"	17731 (5.50")	Passed (37%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	6320 @ 5 1/2"	56434	Passed (11%)		1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	36083 @ 11' 7 1/2"	58189	Passed (62%)		1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.484 @ 11' 7 1/2"	0.565	Passed (L/560)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.668 @ 11' 7 1/2"	1.129	Passed (L/406)		1.0 D + 1.0 L (All Spans)

Member Length : 23' 3" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Applicable calculations are based on ANSI/AISC 360-16.

• A lateral-torsional buckling factor (Сь) of 1.0 has been assumed.

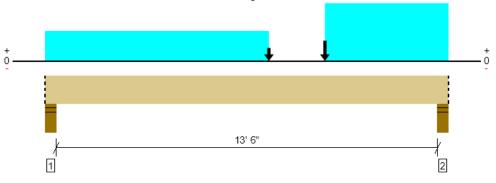
	Bearing Length			Load	ds to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories	
1 - Stud wall - HF	5.50"	5.50"	5.50"	1814	4766	6580	Blocking	
2 - Stud wall - HF	5.50"	5.50"	5.50"	1814	4766	6580	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 23' 3"	N/A	33.0		
1 - Uniform (PSF)	0 to 23' 3" (Front)	10' 3"	12.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


Forte	WEB Software Operator	Job Notes
L120 (425)	on Kliegl Engineering 636-3313 I@I120engineering.com	

2nd Floor, 2B-5 1 piece(s) 7" x 11 1/4" 2.2E Parallam® PSL

Overall Length: 14' 5"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8946 @ 14' 1"	15593 (5.50")	Passed (57%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	8801 @ 13' 1/4"	17509	Passed (50%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	35526 @ 10'	41331	Passed (86%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.296 @ 8'	0.344	Passed (L/558)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.628 @ 8'	0.688	Passed (L/263)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 14' 5" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories	
1 - Stud wall - HF	5.50"	5.50"	1.70"	2525	1777	1268	4809	Blocking	
2 - Stud wall - HF	5.50"	5.50"	3.16"	4804	2906	2616	8946	Blocking	
Blocking Panels are assumed to carry no log	Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	14' 5" o/c					
Bottom Edge (Lu)	14' 5" o/c					

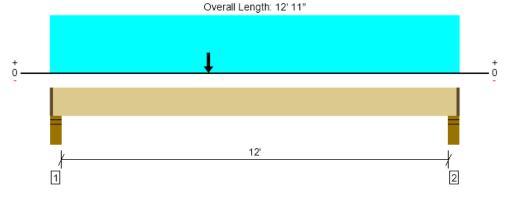
Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 14' 5"	N/A	24.6			
1 - Uniform (PSF)	0 to 8' (Front)	1'	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	10' to 14' 5" (Front)	1'	15.0	60.0	25.0	Deck Load
3 - Point (lb)	10' (Front)	N/A	5128	2108	2865	Linked from: 2B-1 (Beam at the Master deck), Support 2
4 - Point (Ib)	8' (Front)	N/A	1684	1990	909	Linked from: 2B-2 (Beam under the Master slider door), Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com Job Notes

4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 25 / 66

Member Length : 12' 8" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4913 @ 4"	5670 (4.00")	Passed (87%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2973 @ 1' 5 3/8"	8035	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	11129 @ 6' 5 1/2"	19902	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.190 @ 6' 5 1/2"	0.306	Passed (L/775)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.342 @ 6' 5 1/2"	0.613	Passed (L/430)		1.0 D + 0.75 L + 0.75 S (All Spans)

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	3.47"	1893	1938	1211	1408/- 1408	4993	1 1/2" Rim Board
2 - Stud wall - HF	5.50"	4.00"	3.27"	1893	1938	1211	867/-867	4709	1 1/2" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 8" o/c	
Bottom Edge (Lu)	12' 8" o/c	

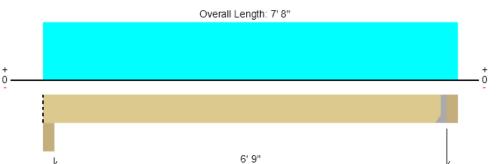
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	1 1/2" to 12' 9 1/2"	N/A	13.0				
1 - Uniform (PSF)	0 to 12' 11" (Front)	7' 6"	12.0	40.0	-	-	Floor Load
2 - Uniform (PLF)	0 to 12' 11" (Top)	N/A	100.0	-	-	-	Wall Load Above
3 - Uniform (PSF)	0 to 12' 11" (Top)	7' 6"	12.0	-	25.0	-	Roof Load Above
4 - Point (Ib)	5' (Top)	N/A	-	-	-	2275	EQ = 910lb * 2.5

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Joi Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

Job Notes

2nd Floor, 2B-7 1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1533 @ 7' 2 1/2"	1969 (1.50")	Passed (78%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1092 @ 6' 2 5/8"	3948	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2635 @ 3' 9 1/4"	8924	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.043 @ 3' 9 1/4"	0.172	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.061 @ 3' 9 1/4"	0.344	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 7' 2 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

2

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

1

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Beam - GLB	5.50"	5.50"	1.50"	475	1207	1682	Blocking
2 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	1.50"	488	1247	1735	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	7' 3" o/c					
Bottom Edge (Lu)	7' 3" o/c					
Maximum allowable bracing intervals based on applied load.						

app

Connector: Simpson Strong-Tie

Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 2 - Face Mount Hanger U14 2.00" N/A 14-10d 6-10dx1.5	1 5						
2 - Face Mount Hanger U14 2.00" N/A 14-10d 6-10dx1.5	Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
	2 - Face Mount Hanger	U14	2.00"	N/A	14-10d	6-10dx1.5	

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

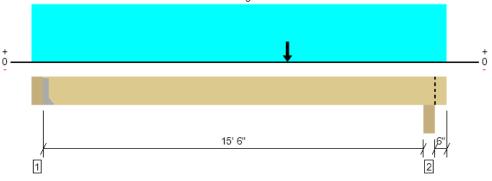
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 7' 2 1/2"	N/A	6.1		
1 - Uniform (PSF)	0 to 7' 8" (Front)	8'	15.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Klieg L120 Engineering (425) 636-3313 hkliegl@I120engineering.com



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 27 / 66

2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Overall Length: 16' 11"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1399 @ 5 1/2"	3938 (1.50")	Passed (36%)		1.0 D + 1.0 L (Alt Spans)
Shear (lbs)	1711 @ 14' 11 5/8"	7897	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	9158 @ 10' 3"	17848	Passed (51%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.265 @ 8' 8 1/4"	0.393	Passed (L/712)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.385 @ 8' 8 1/16"	0.786	Passed (L/490)		1.0 D + 1.0 L (Alt Spans)

Member Length : 16' 5 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

Overhang deflection criteria: LL (2L/480) and TL (2L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	1.50"	466	970	1436	See note 1
2 - Beam - HF	5.50"	5.50"	1.50"	602	1293	1895	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	16' 1" o/c						
Bottom Edge (Lu)	16' 6" o/c						

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-7	Гіе						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	LUS410	2.00"	N/A	8-10d	6-10d		

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

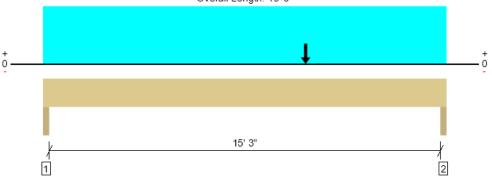
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	5 1/2" to 16' 11"	N/A	12.1		
1 - Uniform (PSF)	0 to 16' 11" (Front)	1' 6"	15.0	40.0	Floor Load
2 - Point (lb)	10' 3" (Front)	N/A	488	1247	Linked from: 2B-7, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Klieg L120 Engineering (425) 636-3313 hkliegl@l120engineering.com


4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 28 / 66

2nd Floor, 2B-9 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

PASSED

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2600 @ 15' 7 1/2"	10725 (3.00")	Passed (24%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2392 @ 14' 9"	8745	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	11024 @ 10' 3"	14653	Passed (75%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.323 @ 8' 4 1/16"	0.517	Passed (L/576)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.735 @ 8' 1 1/4"	0.775	Passed (L/253)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 15' 9" System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240)

• A 1.3% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 15' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Supp			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	1331	734	394	2177	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	1477	1103	394	2600	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 15' 9"	N/A	12.0			
1 - Uniform (PSF)	0 to 15' 9" (Front)	1'	12.0	40.0	-	Default Load
2 - Point (lb)	10' 3" (Front)	N/A	475	1207	-	Linked from: 2B-7, Support 1
3 - Uniform (PLF)	0 to 15' 9" (Top)	N/A	100.0	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 15' 9" (Top)	2'	12.0	-	25.0	Rood Load Above

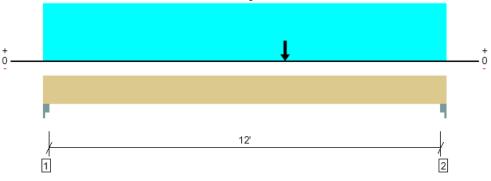
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

5



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 29 / 66

2nd Floor, 2B-10 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5388 @ 12' 4 1/2"	10725 (3.00")	Passed (50%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	4464 @ 11' 4 1/2"	10203	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	17220 @ 7' 4 15/16"	19970	Passed (86%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.275 @ 6' 4"	0.408	Passed (L/535)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.480 @ 6' 3 15/16"	0.613	Passed (L/306)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 12' 6" System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1.2% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 12' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

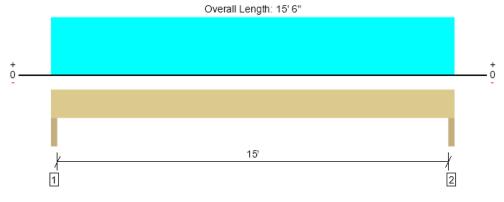
	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Column Cap - steel	3.00"	3.00"	1.50"	2191	2616	1219	5067	None
2 - Column Cap - steel	3.00"	3.00"	1.51"	2313	2880	1219	5388	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 6"	N/A	14.0			
1 - Uniform (PLF)	0 to 12' 6" (Top)	N/A	298.1	336.3	195.0	Linked from: 2J-5, Support 2
2 - Point (lb)	7' 6" (Top)	N/A	602	1293	-	Linked from: 2B-8, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	1
(425) 636-3313	1
hkliegl@I120engineering.com	1

2nd Floor, 2B-11 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1768 @ 1 1/2"	10725 (3.00")	Passed (16%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1346 @ 1' 1 1/2"	10203	Passed (13%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	5905 @ 7' 9"	19895	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.096 @ 7' 9"	0.508	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.291 @ 7' 9"	0.762	Passed (L/630)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 15' 6" System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1.6% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 15' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

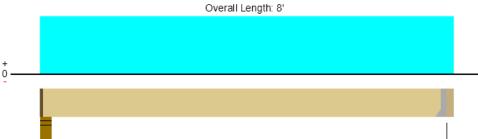
	Bearing Length				Loads to Supp			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	1187	388	388	1768	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	1187	388	388	1768	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 15' 6"	N/A	14.0			
1 - Uniform (PSF)	0 to 15' 6" (Top)	1' 3"	12.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 15' 6" (Top)	N/A	100.0	-	-	Wall Load Above
3 - Uniform (PSF)	0 to 15' 6" (Top)	2'	12.0	-	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hkliegl@I120engineering.com	

2nd Floor, 2B-12

1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

7' 3"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1365 @ 7' 8 1/2"	1969 (1.50")	Passed (69%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	998 @ 6' 8 5/8"	3948	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2516 @ 4' 1/4"	8924	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.049 @ 4' 1/4"	0.184	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.064 @ 4' 1/4"	0.369	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 7' 7" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

0

2

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Load	ls to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	2.03"	361	1126	1487	1 1/2" Rim Board
2 - Hanger on 11 7/8" LVL beam	3.50"	Hanger ¹	1.50"	357	1114	1471	See note 1

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	7' 7" o/c					
Bottom Edge (Lu)	7' 7" o/c					
•Maximum allowable bracing intervals based on applied load.						

app

Connector: Simpson Strong-Tie

Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 2 - Face Mount Hanger HUS1.81/10 3.00" N/A 30-10dx1.5 10-10d	1 5						
2 - Face Mount Hanger HUS1.81/10 3.00" N/A 30-10dx1.5 10-10d	Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
	2 - Face Mount Hanger	HUS1.81/10	3.00"	N/A	30-10dx1.5	10-10d	

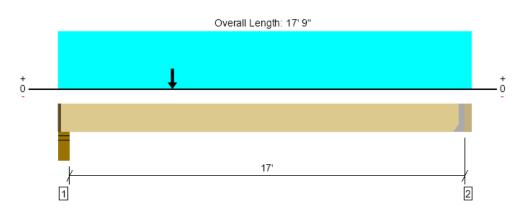
· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/2" to 7' 8 1/2"	N/A	6.1		
1 - Uniform (PSF)	0 to 8' (Front)	7'	12.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Harrison Klieg L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

2nd Floor, 2B-13

2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1633 @ 4"	5670 (4.00")	Passed (29%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1548 @ 1' 5 3/8"	7897	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	6858 @ 5'	17848	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.244 @ 8' 3 3/8"	0.428	Passed (L/841)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.346 @ 8' 3 7/8"	0.856	Passed (L/594)		1.0 D + 1.0 L (All Spans)

Member Length : 17' 4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	1.50"	473	1166	1639	1 1/2" Rim Board
2 - Hanger on 11 7/8" LVL beam	3.50"	Hanger ¹	1.50"	307	658	965	See note 1

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments						
Top Edge (Lu)	17' 4" o/c							
Bottom Edge (Lu)	17' 4" o/c							
Maximum allowable bracing intervals based on applied load.								

•Maximum allowable bracing intervals based on applied loa

Connector: Simpson Strong-Tie

1 3						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-10dx1.5	6-10d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/2" to 17' 5 1/2"	N/A	12.1		
1 - Uniform (PSF)	0 to 17' 9" (Front)	1'	12.0	40.0	Floor Load
2 - Point (lb)	5' (Front)	N/A	357	1114	Linked from: 2B- 12, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes
Harrison Kliegl
L120 Engineering
(425) 636-3313
hkliegl@1120engineering.com



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 33 / 66

2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1741 @ 4"	5670 (4.00")	Passed (31%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1519 @ 1' 5 3/8"	7897	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5171 @ 4' 8 7/8"	17848	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.107 @ 6' 3"	0.306	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.153 @ 6' 2 15/16"	0.613	Passed (L/961)		1.0 D + 1.0 L (All Spans)

Member Length : 12' 8" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

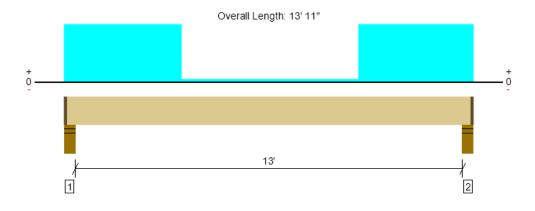
	Bearing Length			Load	ls to Supports (
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	1.50"	524	1236	1760	1 1/2" Rim Board
2 - Stud wall - HF	5.50"	4.00"	1.50"	401	972	1373	1 1/2" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 8" o/c	
Bottom Edge (Lu)	12' 8" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/2" to 12' 9 1/2"	N/A	12.1		
1 - Uniform (PSF)	0 to 12' 11" (Front)	3'	12.0	40.0	Floor Load
2 - Point (lb)	4' (Front)	N/A	307	658	Linked from: 2B- 13, Support 2


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hkliegl@I120engineering.com	

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	1290 @ 13' 7"	2835 (4.00")	Passed (46%)		1.0 D + 1.0 L (All Spans) [1]
Shear (lbs)	1042 @ 12' 5 5/8"	3948	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Moment (Ft-lbs)	4154 @ 6' 11 1/2"	8924	Passed (47%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Live Load Defl. (in)	0.243 @ 6' 11 1/2"	0.331	Passed (L/655)		1.0 D + 1.0 L (All Spans) [1]
Total Load Defl. (in)	0.292 @ 6' 11 1/2"	0.663	Passed (L/545)		1.0 D + 1.0 L (All Spans) [1]

Member Length : 13' 8" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Supp			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	1.82"	260	1053	-20	1313	1 1/2" Rim Board
2 - Stud wall - HF	5.50"	4.00"	1.82"	259	1054	-20	1313	1 1/2" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

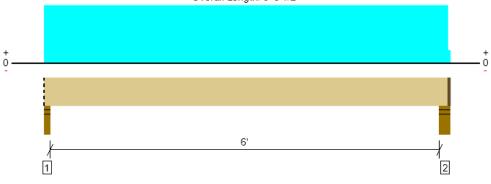
Bracing Intervals	Comments
10' 11" o/c	
13' 8" o/c	
	10' 11" o/c

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/2" to 13' 9 1/2"	N/A	6.1			
1 - Uniform (PSF)	0 to 4' (Front)	3' 6"	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	10' to 13' 11" (Front)	3' 6"	12.0	40.0	-	Floor Load
3 - Uniform (PLF)	4' to 10' (Front)	N/A	17.3	166.5/-1.5	-6.8	Linked from: 2J-6, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	1
(425) 636-3313	1
hklieal@l120enaineerina.com	1

2nd Floor, 2B-16 1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Overall Length: 6' 8 1/2"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1934 @ 1 1/2"	2126 (3.00")	Passed (91%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1197 @ 1' 2 7/8"	3948	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2906 @ 3' 3"	8924	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.036 @ 3' 3"	0.156	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.058 @ 3' 3"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 6' 7" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.00"	3.00"	2.73"	732	1203	380	1934	Blocking
2 - Stud wall - HF	5.50"	4.00"	2.80"	770	1269	399	2040	1 1/2" Rim Board

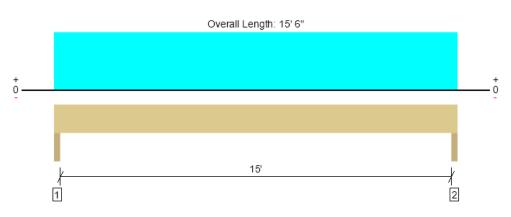
• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Bracing Intervals	Comments
6' 7" o/c	
6' 7" o/c	
	6' 7" o/c

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 7"	N/A	6.1			
1 - Uniform (PSF)	0 to 6' 8 1/2" (Back)	3'	12.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 6' 8" (Front)	N/A	183.1	250.0	116.9	Linked from: 2J-2, Support 1


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hkliegl@l120engineering.com	

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3181 @ 1 1/2"	6825 (3.00")	Passed (47%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2442 @ 1' 6"	9275	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	11360 @ 7' 9"	22619	Passed (50%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.230 @ 7' 9"	0.508	Passed (L/796)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.282 @ 7' 9"	0.762	Passed (L/649)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 15' 6" System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 13.8% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 15' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	587	2441	1017	3181	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	587	2441	1017	3181	None

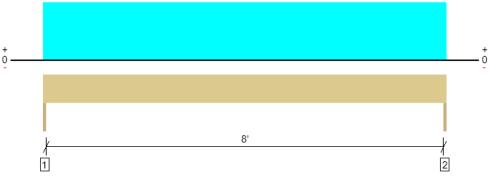
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 15' 6"	N/A	12.8			
1 - Uniform (PLF)	0 to 15' 6" (Top)	N/A	63.0	315.0	131.3	Linked from: 2J-3 (Deck Joist), Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job N
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hkligal@l120engingering.com	



1st Floor, 1H-1 1 piece(s) 6 x 10 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2010 @ 0	5156 (1.50")	Passed (39%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1563 @ 11"	5922	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4145 @ 4' 1 1/2"	6002	Passed (69%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.052 @ 4' 1 1/2"	0.275	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.099 @ 4' 1 1/2"	0.412	Passed (L/996)		1.0 D + 1.0 L (All Spans)

Member Length : 8' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 0.5% decrease in the moment capacity has been added to account for lateral stability.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

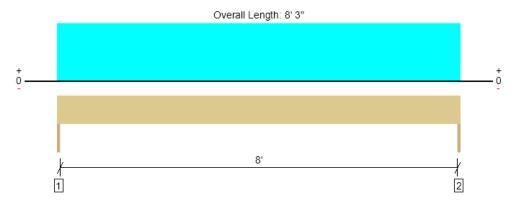
• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	952	1058	130	2010	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	952	1058	130	2010	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 3"	N/A	13.2			
1 - Uniform (PLF)	0 to 8' 3"	N/A	217.5	256.5		Linked from: 2J-6, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com	

1st Floor, 1H-2 1 piece(s) 4 x 10 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1535 @ 0	3281 (1.50")	Passed (47%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1202 @ 10 3/4"	3885	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3167 @ 4' 1 1/2"	4430	Passed (71%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.079 @ 4' 1 1/2"	0.275	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.105 @ 4' 1 1/2"	0.412	Passed (L/943)		1.0 D + 1.0 L (All Spans)

Member Length : 8' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1.4% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

	Bearing Length		Load	ds to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	380	1155	1535	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	380	1155	1535	None

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	End Bearing Points				
Bottom Edge (Lu)	End Bearing Points				

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 3"	N/A	8.2		
1 - Uniform (PSF)	0 to 8' 3"	7'	12.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

1st Floor, 1H-3 1 piece(s) 4 x 6 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1147 @ 0	3281 (1.50")	Passed (35%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	736 @ 7"	2657	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	932 @ 1' 7 1/2"	1971	Passed (47%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.014 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.023 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 3' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 0.4% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

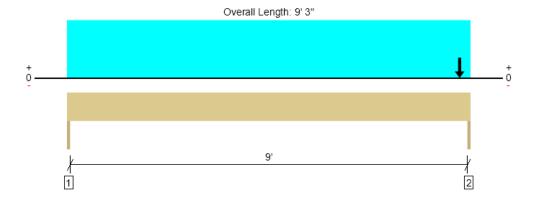
	Bearing Length			Loads	to Support		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	457	691	1147	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	457	691	1147	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	4.9		
1 - Uniform (PSF)	0 to 3' 3"	17'	16.2	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com	

1st Floor, 1H-4 1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2342 @ 9' 3"	3413 (1.50")	Passed (69%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	628 @ 8' 6"	4638	Passed (14%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	909 @ 5' 7"	6450	Passed (14%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.037 @ 4' 9 1/8"	0.308	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.065 @ 4' 10 1/8"	0.463	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 9' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1.7% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 9' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Supp			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	121	205	11	326	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1380	899	383	2342	None

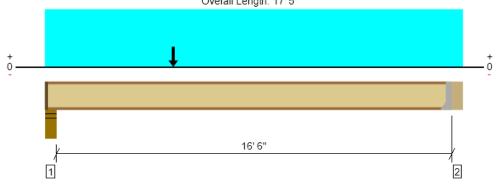
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 3"	N/A	6.4			
1 - Uniform (PSF)	0 to 9' 3"	1'	12.0	40.0	-	Floor Load
2 - Point (Ib)	9'	N/A	1331	734	394	Linked from: 2B-9, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hklieal@l120enaineerina.com	



PASSED

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	513 @ 16' 11 1/2"	1005 (1.75")	Passed (51%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	609 @ 5 1/2"	1655	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2528 @ 7' 1 3/16"	3795	Passed (67%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.239 @ 8' 6 11/16"	0.415	Passed (L/833)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.375 @ 8' 5 1/4"	0.829	Passed (L/530)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	46	40	Passed		

Member Length : 16' 10" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	5.50"	4.00"	1.75"	231	402	633	1 1/2" Rim Board
2 - Hanger on 11 7/8" DF beam	5.50"	Hanger ¹	1.75" / - 2	162	375	537	See note 1

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Bracing Intervals	Comments
4' 7" o/c	
16' 10" o/c	
	4' 7" o/c

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-T	ie					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	IUS2.06/11.88	2.00"	N/A	10-10dx1.5	2-Strong-Grip	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 17' 5"	12"	12.0	40.0	Floor Load
2 - Point (PLF)	5' 6"	12"	160.0	-	2 levels wall load
3 - Point (PLF)	5' 6"	12"	24.0	80.0	DL = 12psf * 2ft LL = 40 psf * 2ft

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com Job Notes

4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 43 / 66

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	540 @ 5 1/2"	1005 (1.75")	Passed (54%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	540 @ 5 1/2"	1655	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2105 @ 8' 3"	3795	Passed (55%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.212 @ 8' 3"	0.390	Passed (L/883)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.275 @ 8' 3"	0.779	Passed (L/679)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	47	40	Passed		

Member Length : 15' 9 1/2" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser EdgeTM Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on Single 2X DF plate	5.50"	Hanger ¹	1.75" / - 2	132	440	572	See note 1
2 - Stud wall - DF	3.50"	3.50"	1.75"	128	427	555	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Bracing Intervals	Comments
5' 1" o/c	
15' 10" o/c	
	5' 1" o/c

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-T	le					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	ITS2.06/11.88	2.00"	4-10dx1.5	2-10dx1.5	2-Strong-Grip	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

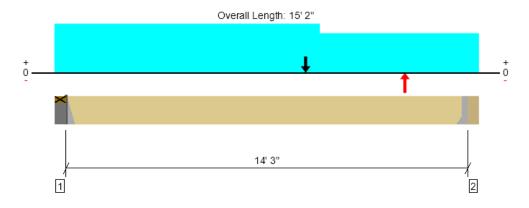
			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 16' 3"	16"	12.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 44 / 66

1st Floor, 1B-1

1 piece(s) 3 1/2" x 11 7/8" 2.2E Parallam® PSL

An excessive uplift of -2152 lbs at support located at 14' 8 1/2" failed this product.

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4886 @ 14' 8 1/2"	4886 (2.23")	Passed (100%)		1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	6056 @ 12' 6"	12857	Passed (47%)	1.60	1.0 D + 0.7 E (All Spans)
Moment (Ft-lbs)	12758 @ 7' 4 13/16"	19902	Passed (64%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.297 @ 7' 7 1/16"	0.356	Passed (L/576)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.464 @ 7' 6 1/2"	0.712	Passed (L/369)		1.0 D + 1.0 L (All Spans)

Member Length : 14' 3" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• -526 lbs uplift at support located at 5 1/2". Strapping or other restraint may be required.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Hanger on Single 2X HF plate	5.50"	Hanger ¹	1.90"	1484	2427	2023/- 2023	4366/-526	See note 1
2 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	2.23"	1107	2427	4023/- 4023	5040/-2152	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	14' 3" o/c					
Bottom Edge (Lu)	14' 3" o/c					
•Maximum allowable bracing intervals based on applied load.						

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			
2 - Face Mount Hanger	HHUS410	3.00"	N/A	30-10d	10-10d			
Defende werde feet werde ender and bestminit								

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	5 1/2" to 14' 8 1/2"	N/A	13.0			
1 - Uniform (PSF)	0 to 15' 2" (Front)	1'	12.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 9' 6" (Top)	N/A	100.0	-	-	Wall Load Above
3 - Uniform (PSF)	0 to 15' 2" (Top)	7'	12.0	40.0	-	2nd floor load
4 - Point (lb)	9' (Top)	N/A	-	-	9500	EQ = 3800 * 2.5
5 - Point (lb)	12' 6" (Top)	N/A	-	-	-11500	EQ = 4600 * 2.5

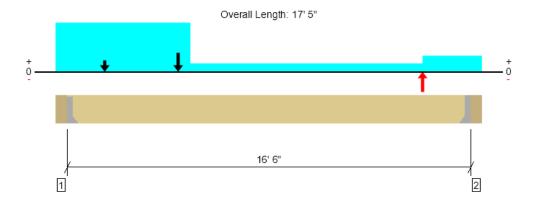
ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Harrison Kliegl
L120 Engineering
(425) 636-3313
hkliegl@I120engineering.com

Job Notes


4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 46 / 66

1st Floor, 1B-2 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

An excessive uplift of -3559 lbs at support located at 5 1/2" failed this product.

An excessive uplift of -5311 lbs at support located at 16' 11 1/2" failed this product.

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8505 @ 5 1/2"	8505 (2.59")	Passed (100%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	5322 @ 1' 5 3/8"	12053	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	25744 @ 5'	47766	Passed (54%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.228 @ 8' 7/16"	0.412	Passed (L/869)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.346 @ 8' 7/8"	0.825	Passed (L/571)		1.0 D + 1.0 L (All Spans)

Member Length : 16' 6" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Supp			
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	2.59"	1992	4247	6792/- 6792	8743/-3559	See note 1
2 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	2.00"	821	1153	8292/- 8292	6625/-5311	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	16' 6" o/c	
Bottom Edge (Lu)	16' 6" o/c	
<u> </u>		

•Maximum allowable bracing intervals based on applied load.

Harrison Kliegl

L120 Engineering (425) 636-3313

hkliegl@l120engineering.com

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Face Mount Hanger	HGUS5.50/10	4.00"	N/A	46-16d	16-16d			
2 - Face Mount Hanger	UA12 W=5.375	2.06"	N/A	18-SDS25300	12-SDS25300			

Weyerhaeuser

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

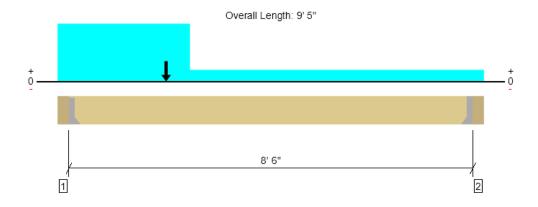
			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	5 1/2" to 16' 11 1/2"	N/A	19.5			
1 - Uniform (PSF)	0 to 17' 5" (Front)	2'	12.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 5' 6" (Top)	N/A	100.0	-	-	Wall load above
3 - Uniform (PSF)	0 to 5' 6" (Top)	8'	12.0	40.0	-	2nd floor load
4 - Point (Ib)	15' (Top)	N/A	-	-	-13000	EQ = 5200 * 2.5
5 - Point (Ib)	5' (Top)	N/A	-	-	11500	EQ = 4600 * 2.5
6 - Uniform (PLF)	15' to 17' 5" (Top)	N/A	100.0	-	-	wall load above
7 - Point (Ib)	2' (Back)	N/A	754	2247	-	Linked from: 1B-9, Support 1
ForteWEB Software Opera	Notes					

4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 47 / 66

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com Job Notes



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 48 / 66

1st Floor, 1B-3 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

An excessive uplift of -5729 lbs at support located at 5 1/2" failed this product.

An excessive uplift of -1777 lbs at support located at 8' 11 1/2" failed this product.

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6673 @ 5 1/2"	6673 (2.03")	Passed (100%)		1.0 D + 0.7 E (All Spans)
Shear (lbs)	6460 @ 1' 5 3/8"	19285	Passed (33%)	1.60	1.0 D + 0.7 E (All Spans)
Moment (Ft-Ibs)	13175 @ 2' 6"	47766	Passed (28%)	1.60	1.0 D + 0.7 E (All Spans)
Live Load Defl. (in)	0.011 @ 4' 6 1/8"	0.213	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.018 @ 4' 5 15/16"	0.425	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 8' 6" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	2.03"	646	1005	8738/- 8738	6763/-5729	See note 1
2 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	1.50"	261	468	2762/- 2762	2195/-1777	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	8' 6" o/c					
Bottom Edge (Lu)	8' 6" o/c					
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	MGU5.50-SDS H=11.813	4.50"	N/A	24-SDS25212	16-SDS25212	
2 - Face Mount Hanger	HHUS5.50/10	3.00"	N/A	30-10d	10-10d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	5 1/2" to 8' 11 1/2"	N/A	19.5			
1 - Uniform (PSF)	0 to 9' 5" (Front)	2'	12.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 3' (Top)	N/A	100.0	-	-	Wall load above
3 - Uniform (PSF)	0 to 3' (Top)	6'	12.0	40.0	-	2nd floor load
4 - Point (Ib)	2' 6" (Top)	N/A	-	-	11500	EQ = 4600 * 2.5

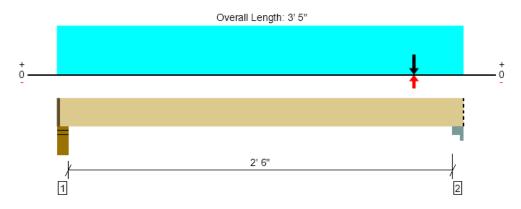
ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com Job Notes

4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 50 / 66



Member Length : 3' 3 1/2" System : Floor

Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

1st Floor, 1B-4 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

An excessive uplift of -5500 lbs at support located at 3' 1" failed this product.

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	14928 @ 3' 1"	18047 (5.50")	Passed (83%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]
Shear (lbs)	215 @ 1' 5 3/8"	12053	Passed (2%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Moment (Ft-lbs)	780 @ 1' 8 1/2"	29854	Passed (3%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Live Load Defl. (in)	0.001 @ 1' 8 1/2"	0.069	Passed (L/999+)		1.0 D + 1.0 L (All Spans) [1]
Total Load Defl. (in)	0.002 @ 1' 8 1/2"	0.138	Passed (L/999+)		1.0 D + 1.0 L (All Spans) [1]

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	1.50"	349	1059	-	1408	1 1/2" Rim Board
2 - Column Cap - steel	5.50"	5.50"	4.55"	3450	7733	10815/- 10815	14928/- 5500	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	3' 4" o/c				
Bottom Edge (Lu)	3' 4" o/c				
Maximum allowable bracing intervals based on applied load.					

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	1 1/2" to 3' 5"	N/A	19.5			
1 - Uniform (PSF)	0 to 3' 5" (Front)	15' 6"	12.0	40.0	-	Floor Load
2 - Point (lb)	3' (Front)	N/A	1107	2427	4023/-4023	Linked from: 1B-1, Support 2
3 - Point (lb)	3' (Back)	N/A	1992	4247	6792/-6792	Linked from: 1B-2, Support 1

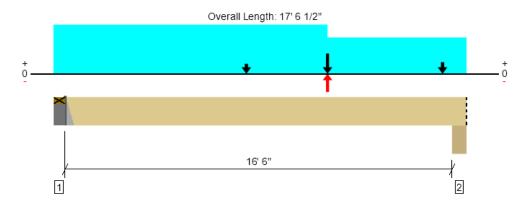
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Klieg L120 Engineering (425) 636-3313 hkliegl@l120engineering.com

4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 51 / 66


MEMBER REPORT

FAILED

1st Floor, 1B-5

1 piece(s) 7" x 16" 2.2E Parallam® PSL

An excessive uplift of -1538 lbs at support located at 5 1/2" failed this product. An excessive uplift of -4879 lbs at support located at 17' 1" failed this product.

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	11758 @ 5 1/2"	11758 (2.69")	Passed (100%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]
Shear (lbs)	10531 @ 15' 7 1/2"	21653	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Moment (Ft-lbs)	48659 @ 9' 1 11/16"	69909	Passed (70%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Live Load Defl. (in)	0.305 @ 8' 11 1/4"	0.416	Passed (L/654)		1.0 D + 1.0 L (All Spans) [1]
Total Load Defl. (in)	0.500 @ 8' 10 13/16"	0.831	Passed (L/399)		1.0 D + 1.0 L (All Spans) [1]

Member Length : 17' 1" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

· Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Hanger on Single 2X HF plate	5.50"	Hanger ¹	2.69"	4110	6069	599	5719/- 5719	12114/- 1538	See note 1
2 - Column - PSL	7.00"	7.00"	4.29"	5064	10011	356	11311/- 11311	18777/- 4879	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	17' 1" o/c				
Bottom Edge (Lu)	17' 1" o/c				
Maximum allowable bracing intervals based on applied load					

num allowable bracing intervals based on applied

Connector[,] Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A		

Weyerhaeuser

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

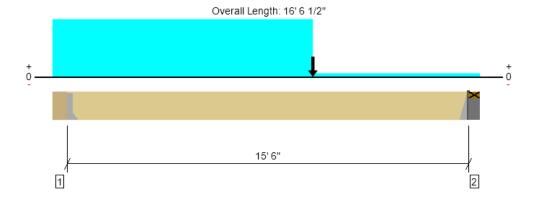
ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	5 1/2" to 17' 6 1/2"	N/A	35.0				
1 - Uniform (PSF)	0 to 17' 6 1/2" (Front)	13'	12.0	40.0	-	-	Floor Load
2 - Point (lb)	11' 6" (Front)	N/A	646	1005	-	8738/-8738	Linked from: 1B-3, Support 1
3 - Uniform (PLF)	0 to 11' 6" (Top)	N/A	160.0	-	-	-	2 levels wall load above
4 - Point (lb)	8' (Top)	N/A	732	1203	380	-	Linked from: 2B- 16, Support 1
5 - Uniform (PSF)	0 to 11' 6" (Top)	2'	16.2	-	25.0	-	Roof Load Above
6 - Point (lb)	11' 6" (Back)	N/A	821	1153	-	8292/-8292	Linked from: 1B-2, Support 2
7 - Point (lb)	16' 6" (Front)	N/A	1427	3597	-	-	Linked from: 1B- 11, Support 1

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Harrison Kliegl L120 Engineering (425) 636-3313	
hkliegl@l120engineering.com	


Job Notes

1st Floor, 1B-6

1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5700 @ 7"	5700 (1.74")	Passed (100%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4967 @ 1' 6 7/8"	12053	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	21937 @ 8' 3 3/8"	29854	Passed (73%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.346 @ 8' 2 3/4"	0.387	Passed (L/537)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.605 @ 8' 2 9/16"	0.775	Passed (L/307)		1.0 D + 1.0 L (All Spans)

Member Length : 15' 6" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 11 7/8" PSL beam	7.00"	Hanger ¹	1.74"	2674	3447	984	6121	See note 1
2 - Hanger on Single 2X HF plate	5.50"	Hanger ¹	1.50"	1550	2118	565	3667	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	15' 6" o/c					
Bottom Edge (Lu)	15' 6" o/c					
Maximum allowable bracing intervale based on applied load						

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HGUS5.50/10	4.00"	N/A	46-10d	16-10d	
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

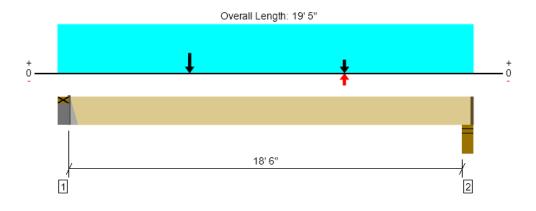
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	7" to 16' 1"	N/A	19.5			
1 - Uniform (PSF)	0 to 16' 6 1/2" (Front)	1'	12.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 10' (Top)	N/A	80.0	-	-	Wall load above
3 - Uniform (PSF)	0 to 10' (Top)	3'	12.0	40.0	-	2nd floor load
4 - Point (lb)	10' (Top)	N/A	732	1203	380	Linked from: 2B- 16, Support 1
5 - Uniform (PLF)	0 to 10' (Top)	N/A	183.1	250.0	116.9	Linked from: 2J-2, Support 1

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com	

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com Job Notes

4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 55 / 66

1st Floor, 1B-7 1 piece(s) 7" x 16" 2.2E Parallam® PSL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	10907 @ 5 1/2"	10907 (2.49")	Passed (100%)		1.0 D + 1.0 L (All Spans) [1]
Shear (lbs)	9994 @ 1' 9 1/2"	21653	Passed (46%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Moment (Ft-lbs)	50641 @ 7' 5 3/8"	69909	Passed (72%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Live Load Defl. (in)	0.426 @ 9' 6 5/16"	0.466	Passed (L/525)		1.0 D + 1.0 L (All Spans) [1]
Total Load Defl. (in)	0.639 @ 9' 5 11/16"	0.931	Passed (L/350)		1.0 D + 1.0 L (All Spans) [1]

Member Length : 18' 10" system : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Hanger on Single 2X HF plate	5.50"	Hanger ¹	2.49"	3752	7453	691	865/-865	11205	See note 1
2 - Stud wall - HF	5.50"	4.00"	3.12"	2755	6170	293	1897/- 1897	8925	1 1/2" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	18' 10" o/c					
Bottom Edge (Lu)	18' 10" o/c					
Maximum allowable bracing intervals based on applied load.						

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

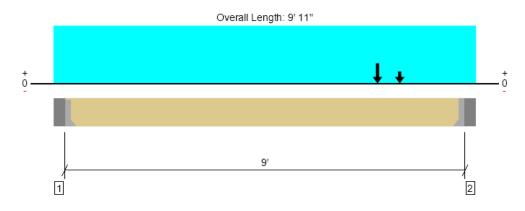
			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	5 1/2" to 19' 3 1/2"	N/A	35.0				
1 - Uniform (PSF)	0 to 19' 5" (Front)	12' 6"	12.0	40.0	-	-	Floor Load
2 - Point (lb)	6' (Front)	N/A	2674	3447	984	-	Linked from: 1B-6, Support 1
3 - Point (lb)	13' 3" (Back)	N/A	261	468	-	2762/-2762	Linked from: 1B-3, Support 2

ForteWEB Software Operator Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com Job Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com Job Notes



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 57 / 66

1st Floor, 1B-8 (Beam over window well) 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

An excessive uplift of -5771 lbs at support located at 9' 5 1/2" failed this product.

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	12443 @ 9' 5 1/2"	12443 (3.79")	Passed (100%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	11696 @ 8' 5 5/8"	19285	Passed (61%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Moment (Ft-Ibs)	21143 @ 7' 6"	47766	Passed (44%)	1.60	1.0 D + 0.7 E (All Spans)
Live Load Defl. (in)	0.054 @ 5' 1 15/16"	0.225	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.124 @ 5' 1 3/8"	0.450	Passed (L/874)		1.0 D + 1.0 L (All Spans)

Member Length : 9' System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• -568 lbs uplift at support located at 5 1/2". Strapping or other restraint may be required.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Hanger on concrete	5.50"	Hanger ¹	1.73"	2798	1930	92	3209/- 3209	5999/-568	See note 1
2 - Hanger on concrete	5.50"	Hanger ¹	3.79"	3846	3361	473	11541/- 11541	12781/- 5771	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	9' o/c					
Bottom Edge (Lu)	9' o/c					
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	5 1/2" to 9' 5 1/2"	N/A	19.5				
1 - Uniform (PSF)	0 to 9' 11" (Front)	8'	12.0	40.0	-	-	Floor Load
2 - Point (lb)	8' (Front)	N/A	1550	2118	565	-	Linked from: 1B-6, Support 2
3 - Point (Ib)	7' 6" (Top)	N/A	-	-	-	14750	EQ = 5900 * 2.5
4 - Uniform (PLF)	0 to 9' 11" (Top)	N/A	400.0	-	-	-	wall load with brick above

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

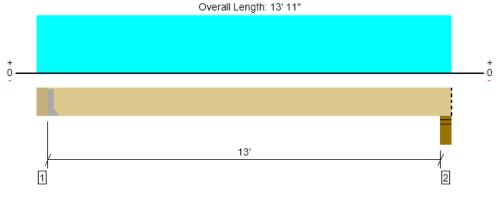
4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 58 / 66

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Harrison Kliegl
L120 Engineering
(425) 636-3313
hkliegl@I120engineering.com

Job Notes



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 59 / 66

1st Floor, 1B-9 2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2810 @ 5 1/2"	3938 (1.50")	Passed (71%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2386 @ 1' 5 3/8"	7897	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	9219 @ 7' 1/4"	17848	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.238 @ 7' 1/4"	0.328	Passed (L/662)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.318 @ 7' 1/4"	0.656	Passed (L/495)		1.0 D + 1.0 L (All Spans)

Member Length : 13' 5 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length		Load	ds to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	1.50"	754	2247	3000	See note 1
2 - Stud wall - HF	5.50"	5.50"	2.08"	746	2207	2952	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	13' 6" o/c					
Bottom Edge (Lu)	13' 6" o/c					
Maximum allowable bracing intervals based on applied load.						

app

Connector: Simpson Strong-Tie

Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Face Mount Hanger HHUS48 3.00" N/A 22-10d 8-10d	1 5						
1 - Face Mount Hanger HHUS48 3.00" N/A 22-10d 8-10d	Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
	1 - Face Mount Hanger	HHUS48	3.00"	N/A	22-10d	8-10d	

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

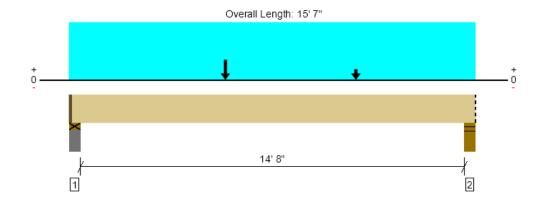
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	5 1/2" to 13' 11"	N/A	12.1		
1 - Uniform (PSF)	0 to 13' 11" (Front)	8'	12.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Klieg L120 Engineering (425) 636-3313 hkliegl@l120engineering.com



4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 60 / 66

1st Floor, 1B-10 1 piece(s) 7" x 14" 2.2E Parallam® PSL

PASSED

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	9470 @ 4"	17500 (4.00")	Passed (54%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	8154 @ 1' 7 1/2"	18947	Passed (43%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	52410 @ 6'	62472	Passed (84%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.230 @ 7' 5 9/16"	0.373	Passed (L/779)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.548 @ 7' 5 7/16"	0.746	Passed (L/327)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 15' 5 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length				Loads to Sup				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories	
1 - Plate on concrete - DF	5.50"	4.00"	2.16"	5519	2766	2509	9475	1 1/2" Rim Board	
2 - Stud wall - DF	5.50"	5.50"	1.65"	4174	2297	1779	7231	Blocking	
• Pim Board is assumed to carry all loads apr	Pim Roard is assumed to carry all loads applied directly above it hypassing the member being designed								

sumed to carry all loads applied directly above it, bypa sing the member being de

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

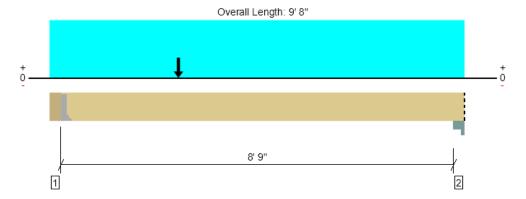
Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	15' 6" o/c				
Bottom Edge (Lu)	15' 6" o/c				
Maximum allowable bracing intervals based on applied load.					

racing intervals based on applied load

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/2" to 15' 7"	N/A	30.6			
1 - Uniform (PSF)	0 to 15' 7" (Front)	1'	12.0	40.0	-	Floor Load
2 - Point (Ib)	6' (Top)	N/A	7807	3548	3841	Linked from: 2B-3, Support 2
3 - Point (lb)	11' (Top)	N/A	1225	892	447	Linked from: 2B-3, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering (425) 636-3313	
hkliegl@I120engineering.com	

1st Floor, 1B-11

1 piece(s) 3 1/2" x 11 7/8" 2.2E Parallam® PSL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5000 @ 5 1/2"	5000 (2.29")	Passed (100%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4936 @ 1' 5 3/8"	8035	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	12499 @ 3'	19902	Passed (63%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.109 @ 4' 5 5/8"	0.222	Passed (L/973)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.153 @ 4' 5 5/8"	0.444	Passed (L/696)		1.0 D + 1.0 L (All Spans)

Member Length : 9' 2 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length		Load	ls to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	2.29"	1427	3597	5024	See note 1
2 - Column Cap - steel	5.50"	5.50"	1.50"	645	1556	2201	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	9' 3" o/c					
Bottom Edge (Lu)	9' 3" o/c					
Maximum allowable bracing intervals based on applied load.						

app

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HHUS410	3.00"	N/A	30-16d	10-16d	

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	5 1/2" to 9' 8"	N/A	13.0		
1 - Uniform (PSF)	0 to 9' 8" (Front)	1'	12.0	40.0	Floor Load
2 - Point (lb)	3' (Top)	N/A	1837	4766	Linked from: 2B-4, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Klieg L120 Engineering (425) 636-3313 hkliegl@l120engineering.com

4/19/2024 11:44:29 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Granbois Residence Page 62 / 66

PASSED

Basement, 1C-1 1 piece(s) 6 x 8 DF No.1

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (44%)		
Compression (lbs)	14928	34053	Passed (44%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S
Base Bearing (lbs)	14928	25781	Passed (58%)		1.0 D + 0.525 E + 0.75 L + 0.75 S
Bending/Compression	0.51	1	Passed (51%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Douglas Fir-Larch	
Max Unbraced Length		Comments		
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Floor Live	Seismic	
Vertical Load	(0.90)	(1.00)	(1.60)	Comments
1 - Point (lb)	3450	7733	10815	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

J

Job Notes

MEMBER REPORT

PASSED

Basement, 1C-2 1 piece(s) 6 x 8 DF No.1

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (44%)		
Compression (lbs)	13349	30428	Passed (44%)	1.15	1.0 D + 0.75 L + 0.75 S
Base Bearing (lbs)	13349	25781	Passed (52%)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.57	1	Passed (57%)	1.15	1.0 D + 0.75 L + 0.75 S

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Douglas Fir-Larch	
Max Unbraced Length		Comments		
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Floor Live	Snow	
Vertical Load	(0.90)	(1.00)	(1.15)	Comments
1 - Point (Ib)	7807	3548	3841	Linked from: 2B-3, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Joł
Harrison Kliegl L120 Engineering	
(425) 636-3313	
hkliegl@l120engineering.com	

MEMBER REPORT

Garage, GH-1 1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4569 @ 0	5363 (1.50")	Passed (85%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3807 @ 1' 4 1/2"	16761	Passed (23%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	18847 @ 8' 3"	45742	Passed (41%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.165 @ 8' 3"	0.550	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.332 @ 8' 3"	0.825	Passed (L/597)		1.0 D + 1.0 S (All Spans)

Member Length : 16' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 3.6% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume/size factor of 0.99 that was calculated using length L = 16' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	2300	2269	4569	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	2300	2269	4569	None

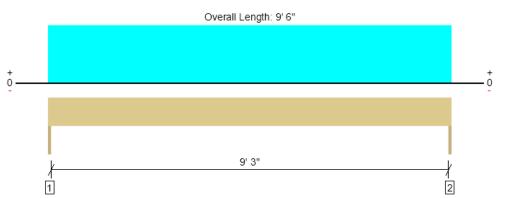
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 6"	N/A	20.0		
1 - Uniform (PSF)	0 to 16' 6"	11'	16.2	25.0	Roof Load
2 - Uniform (PLF)	0 to 16' 6"	N/A	80.0	-	2 ft brick load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hkliegl@l120engineering.com	

MEMBER REPORT

Garage, GH-2 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2572 @ 0	3413 (1.50")	Passed (75%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2098 @ 10 1/2"	6400	Passed (33%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	6108 @ 4' 9"	10560	Passed (58%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.132 @ 4' 9"	0.317	Passed (L/866)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.259 @ 4' 9"	0.475	Passed (L/440)		1.0 D + 1.0 S (All Spans)

Member Length : 9' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 2.8% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 9' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1265	1306	2572	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1265	1306	2572	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 6"	N/A	7.7		
1 - Uniform (PSF)	0 to 9' 6"	11'	16.2	25.0	Roof Load
2 - Uniform (PLF)	0 to 9' 6"	N/A	80.0	-	2 ft brick load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	1
(425) 636-3313	1
hkliegl@l120engineering.com	1

Lateral Design

Lateral-force design element calculation references are shown on structural plans for ease of reference

Project Number:	Plan Name:	Sheet Number:
S230110-1	Granbois	DC
Engineer:	Specifics:	Date:
HK	Design Criteria	4/19/2024

Г

Gravity Criteria:

ROOF SYSTEM						
Live Load: Snow	25.0	nof				
5110W	25.0	psf				
Dead Load:						
Composite Roofing	2.0	psf				
19/32" Plywood Sheathing	2.5	psf				
Trusses at 24" o.c.	3.0	psf				
Insulation	1.8	psf				
(2) Layers 5/8" GWB	4.4	psf				
Misc/Mech	1.3	psf				
Total	15.0	psf				

EXTERIOR WALL S	YSTEN	M	
2x6 at 16" o.c.	1.7	psf	
Insulation	1.0	psf	
1/2" Plywood Sheathing	1.5	psf	
(2) layers 5/8" GWB	4.4	psf	
Misc	3.4	psf	
Total	12.0	psf	

Live Load:			
Residential	40.0	psf	
Dead Load:			
Flooring	3.0	psf	
3/4" T & G Plywood	2.5	psf	
Floor Joists at 16" o.c.	2.5	psf	
Insulation	0.5	psf	
(1) Layers 5/8" GWB	2.2	psf	
Miscellaneous	1.3	psf	
Total	12.0	psf	

FLOOR SYSTEM

Code: IBC 2018

EXTERIOR WALL SY	YSTEM V	W/BRICK
2x6 at 16" o.c.	1.7	
Insulation	1.0	psf
1/2" Plywood Sheathing	1.5	psf
(2) layers 5/8" GWB	4.5	psf
Brick Cladding	40.0	psf
Total	47.0	psf

INTERIOR WALL SYSTEM					
		C			
2x4 at 16" o.c.	1.1	psf			
Insulation	0.5	psf			
(2) Layers 5/8" GWB	4.4	psf			
Misc	2.0	psf			
Total	8.0	psf			

SEISMIC PARAMETERS:

Code Reference: ASCE 7-16

R = **6.5** Bearing Wall System, Wood Structural Panel Walls

Mapped Spectral Acceleration, Ss = 1.64

Mapped Spectral Acceleration, S1 = 0.62

Soil Site Class = **D**

WIND PARAMETERS:

Code Reference: ASCE 7-16

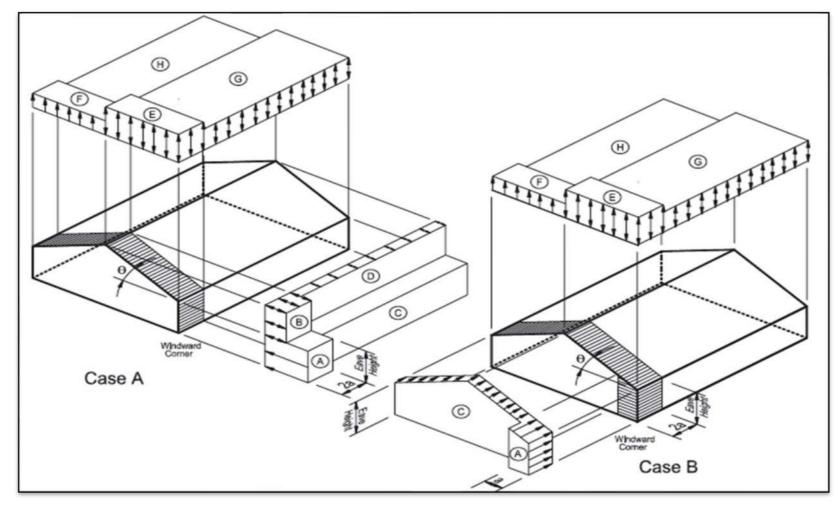
Basic Wind Speed (3 second Gust) = 100 mph Exposure : **B** Kzt = 1.90

SOIL PARAMETERS:

Soil Bearing Pressure = 3,500 psf competent native soil or structural fill 1/3 increase for short-term wind or seismic loading is acceptable Frost Depth = 18 in

Lateral Wall Pressures:

Unrestrained Active Pressure =35pcfCantilevered wallsRestrained Active Pressure =50pcfPlate Wall Design/Tank WallsPassive Pressure =300pcfSoil Friction Coeff. =0.5


Project Number:	Plan:	Sheet Number:
S230110-1	Granbois	L1
Engineer:	Specifics:	Date
НК	WIND FORCES	4/19/2024

IBC 2018 Section 1609 \rightarrow ASCE 7-16 Section 28.5 - Simplified Procedure \rightarrow Main Wind-Force Resisting System

LOAD CRITERIA:			WIND LOAD SU
Basic Wind Speed, $V_s =$	100 mph	(ASCE 7-16, Section 26.5)	Front / Back D
Exposure =	В	(ASCE 7-16, Section 26.7)	Roof
			2nd Floor
UILDING GEOMETRY:			
Roof Slope =	7.00 :12	= 30.26 degrees	1st Floor
Loads From Front/Back - Width (ft)=	73.00 ft	Roof: Hip	
Loads From Side - Width (ft) =	45.50 ft	Roof: Hip	Basement (Base Shear)
Average Eave Height =	21.00 ft		
Mean Roof Ht. , h =	29.00 ft	(ASCE 7-16, Figure 27.5-2)	
Edge Strip Width, a =	4.55 ft	(ASCE 7-16, Figure 28.5-1)	Side / Side Di
End Zone Width, 2a =	9.10 ft	(ASCE 7-16, Figure 28.5-1)	Roof
			2nd Floor
ESIGN:			
Topographic Factor , Kzt =	1.90	(ASCE 7-16, Section 26.8)	1st Floor
Adjustment Factor, $\lambda =$	1.00	(ASCE 7-16, Figure 28.5-1)	
			Basement (Base Shear)

	SIMPLIFIED DESIGN WIND PRESSURE, P _{S30} (psf)											
	(Exposure B at $h = 30 ft$.)											
Basic Wind	Roof			ZONES*								
Speed, Vs	Angle	Load Case		Horizontal Pressure Vertical Pressure Overhang						ang		
(mph)	(Degrees)		Α	В	С	D	Ε	F	G	Н	E _{OH}	G _{OH}
100	30.26	А	17.80	12.20	14.20	9.80	1.40	-10.80	0.50	-9.30	-6.30	-7.20

* Values Interpolated from Figure 28.5-1 ASCE 7 - 16

Project Number:	Plan:	Sheet Number:
S230110-1	Granbois	L1
Engineer:	Specifics:	Date
НК	WIND FORCES	4/19/2024

IBC 2018 Section 1609 \rightarrow ASCE 7-16 Section 28.5 - Simplified Procedure \rightarrow Main Wind-Force Resisting System

]	HORIZONTAL	MIN. LOADS (psf)							
	$p_{s=}\lambda^*Kz$	Per ASCE 7	-16, 28.6.3						
En	id zone	Inter	ior zone	D (XX7 11				
A (Wall)	B (Roof)	C (Wall)	D (Roof)	Roof	Wall				
33.82	23.18	26.98	18.62	8.0	16.0				

Full Impact at Basement? NO

NO (No = 1/4 Impact)

	ASD WIND) FORCE	ES: FRC	ONT / BAC	CK LOAD	ING DIREC	CTION			
		Width	Height		En	d Zone	Inte	rior zone	Force	Min Force
	Location	vv Idul	Treight	Plane	Length	Pressure (W)	Length	Pressure (W)	0.6 ω*W	0.6 ω*W
		(ft)	(ft)		(ft)	(psf)	(ft)	(psf)	(kips)	(kips)
	"Height" of Roof to Plate (see note)	51.0	8.00	(roof)	9.1	23.18	41.9	18.62	6.18	2.55
ROOF	Plate to Mid 2nd LVL	73.0	4.50	(wall)	9.1	33.82	63.9	26.98	7.13	4.10
Ľ								$\Sigma =$	13.32	6.65
OR	Mid 2nd LVL to Floor	73.0	4.50	(wall)	9.1	33.82	63.9	26.98	7.13	4.10
FLOOR	"Height" Low-Roof to Plate (see note)	0.0	0.00	(roof)	9.1	23.18	-9.1	18.62	0.00	0.00
	Floor to Mid 1st LVL	73.0	5.00	(wall)	9.1	33.82	63.9	26.98	7.92	4.56
2nd								$\Sigma =$	15.06	8.65
) K	Mid 1st LVL to Floor	64.0	5.00	(wall)	9.1	33.82	54.9	26.98	6.98	3.99
FLOOR	"Height" Low-Roof to Plate (see note)	0.0	0.00	(roof)	9.1	23.18	-9.1	18.62	0.00	0.00
	Floor to Mid Basement LVL	0.0	5.00	(wall)	9.1	33.82	-9.1	26.98	0.24	0.00
1st								$\Sigma =$	1.80	1.00
						То	tal Wind Ba	ase Shear (kips)	30.18	16.30

Full Impact at Basement?

NO (No = 1/4 Impact)

	ASD WIN	ND FOR	CES: SI	DE / SIDE	LOADI	NG DIRECT	ION			
		Width	Unight		En	nd Zone	Inte	rior zone	Force	Min Force
	Location	w laui	Height	Plane	Length	Pressure (W)	Length	Pressure (W)	0.6 ω*W	0.6 ω*W
		(ft)	(ft)		(ft)	(psf)	(ft)	(psf)	kips	kips
F	"Height" of Roof to Plate (see note)	45.5	8.00	(roof)	9.1	23.18	36.4	18.62	5.55	2.27
ROOF	Plate to Mid 2nd LVL	45.5	4.50	(wall)	9.1	33.82	36.4	26.98	4.53	2.56
R								$\Sigma =$	10.07	4.83
OR	Mid 2nd LVL to Floor	45.5	4.50	(wall)	9.1	33.82	36.4	26.98	4.53	2.56
FLOOR	"Height" Low-Roof to Plate (see note)	0.0	0.00	(roof)	9.1	23.18	-9.1	18.62	0.00	0.00
	Floor to Mid 1st LVL	40.0	5.00	(wall)	9.1	33.82	30.9	26.98	4.45	2.50
2nd								$\Sigma =$	8.98	5.05
JR	Mid 1st LVL to Floor	40.0	5.00	(wall)	9.1	33.82	30.9	26.98	4.45	2.50
FLOOR	"Height" Low-Roof to Plate (see note)	0.0	0.00	(roof)	9.1	23.18	-9.1	18.62	0.00	0.00
	Floor to Mid Basement LVL	0.0	5.00	(wall)	9.1	33.82	-9.1	26.98	0.24	0.00
lst								$\Sigma =$	1.17	0.62
						То	tal Wind B	ase Shear (kips)	20.23	10.50

Total Wind Base Shear (kips)20.2310.50

Project Number:	Plan Name:	Sheet Number:
S230110-1	Granbois	L2
Engineer:	Specifics:	Date:
НК	SEISMIC WEIGHTS	4/19/2024

Unit Weights (psf)

Roof:	15	psf
Floor:	12	psf
Exterior Wall:	12	psf
Exterior Wall/Brick	47	psf
Interior Wall:	8	psf

Seismic Weights include: (REF §12.7)

25% of storage Live loads Actual partition weight or 10 psf min if applicable

Operating weight of permenant equipment

20% of uniform design snow loads for areas where Pf > 30 psf

				UNIT			Level Sub-	Average
		AREA /	HEIGHT	WEIGHT		Weight.	Total	Pressure
LEVEL	ITEM	LENGTH	(ft)	(psf)		(lbs)	(kips)	(psf)
ROOF:								
	Roof	2,630	1.12	15	=	44,282		
	Ext. Wall Below	140	4.00	12	=	6,720		
	Ext. Wall w/Brick Below	145	4.00	47	=	27,260		
	Interior Wall Below	170	4.00	8	=	5,440		
							84	32
2nd FLO	OR:							
	Floor	2,285	1.00	12	=	27,420		
	Low Roof	0	1.12	15	=	0		
	Ext. Wall Above	140	4.00	12	=	6,720		
	Ext. Wall w/Brick Above	145	4.00	47	=	27,260		
	Interior Wall Above	170	4.00	8	=	5,440		
	Ext. Wall Below	75	4.50	12	=	4,050		
	Ext. Wall w/Brick Below	145	4.50	47	=	30,668		
	Interior Wall Below	110	4.50	8	=	3,960		
							106	46
1st FLOO	DR:							
	Floor	2,210	1.00	12	=	26,520		
	Low Roof	0	1.12	15	=	0		
	Ext. Wall Above	75	4.50	12	=	4,050		
	Interior Wall Above	145	4.50	47	=	30,668		
	Interior Wall Above	110	4.50	8	=	3,960		
	Ext. Wall Below	75	4.50	12	=	4,050		
	Ext. Wall w/Brick Below	145	4.50	47	=	30,668		
	Interior Wall Below	100	0.00	8	=	0		
							100	45
BASEME	NT:							
	Ext. Wall Above	75	4.50	12	=	4,050		
	Interior Wall Above	100	0.00	47	=	4,050 0		
		100	0.00	.,		•	4	

STRUCTURE WEIGHT FOR SEISMIC BASE SHEAR: 289 kips

TOTAL WEIGHT OF STRUCTURE:293

(Includes Basement Dead Load)

kips

	1							
Project Nu	mber: \$23011()-1	Plan Name:	Cro	nbois			Sheet Number: L3
Engineer:	5230110	J-T	Specifics:	UId	110012			Date:
-	НК			SEISMI				4/19/2024
Equivela	nt Lateral For	ce Analysis per	IBC 2018 1613.1	\rightarrow ASCE 7-1	6 Table 12	$2.6-1 \rightarrow \text{Sec}$	12.8	
Data	generated by:	Seismic Design	n Values for Build	<u>dings</u>	''Java Gro	ound Motic	on Paramete	r Calculation''
				$S_1 =$	0.62		Maps	
				$S_{DS} =$	1.2		(ASCE 7 EQ	11.43)
				$S_{D1} =$	0.85		(ASCE 7 EQ	1.44)
			Seismic Import Seismic Desig		1.00 D		(ASCE 7 Tabl	
		Resp	onse Modificatio		6.5		(ASCE 7 Tabl (ASCE 7 Tabl	e 11.6-1 & 11.6.2) e 12.2-1)
	S	1	esisting System I			t framed wa		
			Building	g Height, h _n =	30.0	ft		
		Bu	ilding Period Coe	efficient, $C_T =$	0.020		(ASCE 7 Tabl	e 12.82)
		Арр	rox. Fundamenta	l Period, $T_a =$	0.256	$(C_{T^*}(h_n^{0.75}))$	(ASCE 7 EQ	12.87)
		App	rox. Fundamenta	l Period, $T_L =$	6.0	sec	(ASCE 7 11.4	.6)
Soiomio I	Dognongo Cov	fficient						
Seismic I	Response Coe	$C_s = S_{DS}/(R/I)$		$C_s =$	0.185		(ASCE 7 EQ 1	(2.82)
Soismic I	Response Cou	efficient, Maxiı	mum					,
Seisinie 1	Kesponse Coe	$C_{s, MAX} = S_{D1}/($		$C_{s, MAX} =$	0.510	$T \leq T_L$	(ASCE 7 EQ	12.83)
		$C_{s, MAX} = S_{D1} T$	$\Gamma_L/(T^2 * R/I)$	$C_{s, MAX} =$	NA	$T > T_L$	(ASCE 7 EQ	12.84)
Seismic 1	Response Coe	efficient, Minin	num					
	-	$C_{s, MIN} = 0.01$		$C_{s, MIN} =$	0.010		(ASCE 7 EQ	12.85)
		$C_{s, MIN} = 0.5 S_1$	/ (R/I)	$C_{s, MIN} =$	0.048	if S1 > 0.6	(ASCE 7 EQ	12.86)
				$C_s =$	0.185			
			De	ead Load W =	289	kips		
				V = Cs W = $Q_E = V =$	53.4 53.4	kips kips	(ASCE 7 EQ 1 (ASCE 7 EQ 1	
				$Q_{\rm E} - \mathbf{v} = \rho =$	1.0	ырз	(ASCE 7 EQ)	
				$E_{\rm H} = \rho Q_{\rm E} =$	53.4	kips	(ASCE 7 EQ 1	,
			Ev	$v = .2 \text{ S}_{\text{DS}} \text{ D} =$	0.24	x D kips		
		Factor for Alte	rnate Basic Load					
				E_H/1.4 = k =	38.1	kips	IBC 2018 160	
				К =	1		(ASCE 7 12.8	.5)
			TICAL DISTRI		r ASCE 7	-		
	Α	Story Height	Total Height	Story Weight		Vert Dist Factor	Story Force	Factored Story Force (ASD)
Floor	Area	H	height h _x	weight w _x	w _x h _x ^k	Factor Cvx	Force	Force (ASD) Fx $\rho/1.4 = E_H/1.4$
	(ft^2)	(ft)	(ft)	(kips)	(k-ft)		(kips)	(kips)
Roof	2,630	7.00	27.00	84	2,260	0.42	22.5	16.0
and	2,285	10.00	20.00	106	0 1 1 0	0.20	01.0	150
2nd 1st	2,283	10.00	10.00	106 100	2,110 999	0.39 0.19	21.0 9.9	15.0 7.1

Sum =

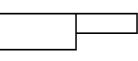
5,369

1.000

53.4

38.1

Project Number:	Plan Name:	Sheet Number:
S230110-1	Granbois	L4
Engineer:	Specifics:	Date:
НК	DESIGN LOADS	4/19/2024


Wind	Force	Seismic	c Force		
0.6 w * W	F/B (kips)	E/1.4	(kips)	•	Covorning Fores
Per Level	Sum	Per Level	Sum		Governing Force:
13.32	Sulli	16.05	Sulli	ROOF	16.05 k Seismic
15.06	13.32	14.99	16.05	2nd FLOOR	15.06 k Wind
1.80	28.37	7.09	31.03	1st FLOOR	7.09 k Seismic
	30.18		38.13	BASEMENT	Base Shear:

				E DIRECTION	
Wind	Force	Seismic	c Force		
0.6 w * V	W _s (kips)	E/1.4 ((kips)	\wedge	Coverning Ferres
Per Level	C	Per Level	C		Governing Force:
10.07	Sum	16.05	Sum	ROOF	16.05 k Seismic
8.98	10.07	14.99	16.05	2nd FLOOR	14.99 k Seismic
1.17	19.05	7.09	31.03	1st FLOOR	7.09 k Seismic
	20.23		38.13	BASEMENT	Base Shear:
		·			38.13 k Seismic

										Notes:						_													
oject Number: S230110-1	Pl	Plan Name:		Granl	bois		Sheet Number:	L5		ratio of 2:1 a * Maximum al	at Pier (SDPWS lowed height to	2018, Table 4.3.4 width ratio 3.5:1 f	For walls w/o openings (incr										J <mark>pdate Formula</mark>	-	-				
gineer: HK	SĮ	Specifics:	Shea	ar walls (i	front/back)		Date: 4/19	9/2024		-	-	018, Table 4.3.4) to underside or roo	of or floor framing.									BLUE =	Review and upo	late as require	d - Typical Input				
d Story Walls (Fro	ont - Ba	ack Direct	tion)					Stud Species	HF]						-	y Walls (Front wns and window		<u>ion)</u>				
	Total	St Shear Pa	ry shear(kips) = tory height (ft) = anel height (ft) = m Area (sq ft) =	16.05 10.00 9.00 2630.00	100% story shear YES	She	Dead load facto ar panel capacity (ce (F/B Direction) = or (F/B Direction) = (Wind or Seismic) = load balance check =	Seismic 0.90 Seismic OK	IBC 2018 Equ	ation 16-22				J							1014 401		<u>, sups</u>					
Mark L(2 1.1 13.	Vall (ft) .50	Opening Width (ft) 6.00 3.00	Opening Height (ft) 5.00 5.00	Opening (max) to Edge (ft) 3.25 4.00	Plate to Opening (ft) 1.50 1.50	Effective Length (ft) 7.50 10.50	Trib. Area (sq ft) 490.00 490.00	Percent Sharing (%) 0.42 0.58	Effective Trib. Area 204.17 285.83	Story V(kips) 1.25 1.74	Sum V(kips) 1.25 1.74	Panel Shear (plf) 166 166	Height/Width Reduction (%) R = 2*L/H 1.00 1.00	Design Panel Shear (plf) 166 166	Wall Type SW6 SW6	Wall Mark 1.1	Roof DL Trib(ft) 8.00 8.00	Sum DL(klf) 0.54 0.54		Sum DL(klf) 0.54 0.54	OTM (k-ft) 12.5 17.4		Resultant HD(kips) -2.47 -2.08	HD TYPE flr-flr flr-flr	HD/Strap to DF or HF? HF	HD location Edge/Interior? Edge	Resultant HD No HD No HD	Force at Window (Kips) 1.44 1.77	Windov Strap
2 2.0 18. 2 3.1 17. 2 3.2 11. 2 3.2 11. 2 4.1 15. 2 4.2 11.	.00 .50 .50 .50	5.00	5.00	4.00	1.50	10.30 18.00 17.50 11.50 15.50 11.50 15.75	620.00 690.00 690.00 600.00 600.00 230.00	1.00 0.60 0.40 0.57 0.43 1.00	283.83 620.00 416.38 273.62 344.44 255.56 230.00	3.78 2.54 1.67 2.10 1.56 1.40	1.74 3.78 2.54 1.67 2.10 1.56 1.40	210 145 145 136 136 89	1.00 1.00 1.00 1.00 1.00 1.00 1.00	210 145 145 136 136 89	SW6 SW6 SW6 SW6 SW6 SW6	1.2 2.0 3.1 3.2 4.1 4.2 5.0	8.00 8.00 2.00 2.00 7.00 2.00 7.00	0.34 0.23 0.14 0.14 0.21 0.45 0.21		0.34 0.23 0.14 0.14 0.21 0.45 0.21	37.8 25.4 16.7 21.0 15.6 14.0	33.2 19.0 8.2 23.0 27.0 23.8	-2.08 0.26 0.38 0.77 -0.13 -1.03 -0.64	flr-flr flr-flr flr-flr flr-flr flr-flr flr-flr flr-flr	HF HF HF HF HF HF	Edge Edge Edge Edge Edge Edge Edge	No HD No HD MST37 No HD No HD No HD	0.00 0.00 0.00 0.00 0.00 0.00 0.00	CS1 No st No st No st No st No st No st
S = 116	5.75				Total OSB wall length]	S =	2630.00	16.05	16.05	ОК	Total OSB Capacity	16.05]											0			110 5
Story Walls (From	nt - Bac	ck Directi	ion)		(feet)	She	ar panel capacity ((Wind or Seismic) =	Wind				(kips)	_									Walls (Front - wns and window		<u>on)</u>				
	Total	Stear Pa	ry shear(kips) = tory height (ft) = anel height (ft) = m Area (sq ft) =	15.06 10.08 9.08 2285.00						umulated Shear = ad balance check =												11014 401		<u>sups</u>					
•	Vall (ft)	Opening Width (ft)	Opening Height (ft)	Opening (max) to Edge (ft)	Plate to Opening (ft)	Effective Length (ft)	Trib. Area (sq ft)	Percent Sharing (%)	Effective Trib. Area	Story V(kips)	Sum V(kips)	Panel Shear (plf)	Height/Width Reduction (%) R = 2*L/H	Design Panel Shear (plf)	Wall Type	Wall Mark	Floor DL Trib(ft)		Walls/DL Stacks?	Sum DL(klf)	OTM (k-ft)		Resultant HD(kips)	HD TYPE	HD/Strap to DF or HF?	HD location Edge/Interior?	Resultant HD	Force at Window (Kips)	Wind Stra
	.50 .50	6.00 3.00	5.00 5.00	3.25 4.00	1.50 1.50	7.50	440.00 440.00	0.42 0.58	183.33 256.67	1.21 1.69	2.45 3.44	327 327	1.00 1.00	327 327	SW4 SW4	1.1	3.00 3.00	0.47 0.47	YES YES	1.01 1.01	24.7 34.6	38.4 38.4	-1.05 -0.29	flr-conc	HF	Edge	HDU2 HDU2	2.84 3.49	CMS'
2.0 18.		5.00	5.00	4.00	1.50	10.50 18.00	530.00	1.00	530.00	3.49	7.28	404	1.00	404	SW4 SW3	2.0	8.00	0.47	YES	0.77	73.3	33.2	2.29	flr-conc flr-flr	HF	Edge Edge	MST37	0.00	CMS No
3.1 16.	.50					16.50	515.00	0.59	306.22	2.02	4.56	276	1.00	276	SW4	3.1	2.00	0.14	YES	0.37	45.9	16.9	1.82	flr-flr	HF	Edge	MST37	0.00	No
3.2 11. 4.1 3.4	.25 50					11.25 3.50	515.00 690.00	0.41 0.30	208.78 210.00	1.38 1.38	3.05 2.50	271 714	1.00 0.77	271 926	SW4 2W2	3.2	2.00 2.00	0.14 0.45	YES YES	0.28 0.59	30.7 25.2	7.9 2.5	2.12 7.56	flr-beam	HF DF-L	Edge	HDU5 HDU11	0.00 0.00	No
4.1 5 4.2 8.0						3.30 8.00	690.00 690.00	0.30	480.00	3.16	2.50 5.71	714	1.00	920 714	2W2 2W3	4.1 4.2	3.00	0.43	YES	0.59	23.2 57.6	2.3 13.5	5.88	flr-conc flr-conc	DF-L DF-L	Edge Edge	HDU11 HDU8	0.00	No : No :
5.0 7.0						7.67	220.00	0.67	146.73	0.97	2.37	309	1.00	309	SW4	5.0	4.00	0.17	NO	0.17	23.9	4.4	2.71	flr-conc	HF	Edge	HDU5	0.00	No s
S = 91.	.92				Total OSB wall length (feet)	= 52.50		S =	2321.73	9.78	31.35	ОК	Total OSB Capacity (kips)	15.06]														
asement Walls (Fro	ont - Ba	ack Direct	tion)																			Basemen	<u>t Walls (Front</u> vns and windov		<u>ion)</u>				

		r		tory shear(kip Story height (Panel height (f(t) = 10.0 f(t) = 9.08	08 08								The rest of the st loads do not match	t ory shear from above ha story shear	as been transferred	into found	ation													
Story		Wall L(ft)	Opening	g Openir) Height (ng Opening	g (max)	Plate to Opening (ft)	Effective Length (ft)	Trib. Area (sq ft)	Percent Sharing (%)	Effective Trib. Area	Story V(kips)	Sum V(kips)	Panel Shear (plf)	Height/Width Reduction (%) R = 2*L/H	Design Panel Shear (plf)		Wall Mark	Story DL(klf)	Sum DL(klf)	Walls/DL Stacks?	Sum DL(klf)	OTM (k-ft)	RM (k-ft)	Resultant HD(kips)	HD TYPE			Resultant HD	Force at Window (Kips)	Window Strap
B B B B B B	2.0 3.0 CONCI	18.00 14.67 RETE FOU						18.00 14.67	590.00 580.00 CO	1.00 1.00 NCRETE FOUNDAT	590.00 580.00 ION	1.89 1.86	9.17 9.47	509 645	1.00 1.00	509 645	SW2 2W4	2.0 3.0	8.00 9.00	0.23 0.24 CONC	YES YES RETE FOUND/	1.00 0.61 ATION	92.4 95.4	33.2 23.5	3.38 5.07	flr-conc flr-conc CONC	HF HF RETE FOUNDA	Edge Edge NTION	HDU5 HDU8	0.00 0.00	No strap No strap

S = 32.67

warning-	vv an	Ioaus	uo	ποι	maten	siory	silcar	

S = 1170.00 3.76 **18.63** Warning-Wall loads do not match story shear

ratio of 2:1 at Pier (SDPWS 2018, Table 4.3.4) Plan Name: Sheet Number: Project Number: S230110-1 Granbois L6 * Maximum allowed height to width ratio 3.5:1 for walls w/o openings (increased shear design values per SDPWS 2018, Table 4.3.4) Specifics: Engineer: Date: Shear walls (side/side) 4/19/2024 HK * Shear panel height is height to underside or roof or floor framing. 2nd Story Walls (Side / Side Direction) Stud Species HF Story shear(kips) = 16.05 Governing Force (F/B Direction) = Seismic Dead load factor (F/B Direction) = Story height (ft) = 9.08 0.90 IBC 2018 Shear Panel height (ft) =8.08 100% story shear Shear panel capacity (Wind or Seismic) = Seismic 2630.00 YES Total Diaphragm Area (sq ft) = load balance check = OKStory Wall Wall Plate to Effective Trib. Area Effective Story Opening Opening Opening (max) Percent V(kips) 0.89 Mark L(ft) Width (ft) Height (ft) to Edge (ft) Opening (ft) Length (ft) (sq ft) Sharing (%) Trib. Area 550.00 145.59 **A1** 4.50 0.26 4.50 **A2** 4.50 550.00 0.26 145.59 0.89 4.50 **A3** 8.00 550.00 0.47 258.82 1.58 8.00 **B1** 10.00 1330.00 0.33 443.33 2.71 10.00 **B2** 1330.00 0.67 886.67 5.41 20.00 20.00 **C1** 16.00 3.00 5.00 4.00 0.50 13.00 750.00 0.59 443.18 2.70 **C2** 9.00 750.00 0.41 1.87 9.00 306.82 S = 72.002630.00 16.05 Total OSB wall length = 27.00 16.05 **S** =

1st Story Walls (Side / Side Direction)

Story shear(kips) =

Story height (ft) =

14.99

10.08

2

2

2

2

2

2

Shear panel capacity (Wind or Seismic) =

Accumulated Shear = 31.03 load balance check = OK

Seismic

				Panel height (ft) gm Area (sq ft)																										
Story	Wall	W	Vall Opening	Opening	Opening (max)	Plate to	Effective	Trib. Area	Percent	Effective	Story	Sum	Panel	Height/Width Reduction (%)	Design Panel	Wall	Wall	Floor DL	Story	Walls/DL	Sum	OTM	RM	Resultant	HD	HD/Strap to	HD location	Resultant	Force at Window	Window Strap
	Mark	L((ft) Width (ft)	Height (ft)	to Edge (ft)	Opening (ft)	Length (ft)	(sq ft)	Sharing (%)	Trib. Area	V(kips)	V(kips)	Shear (plf)	R = 2*L/H	Shear (plf)	Туре	Mark	Trib(ft)	DL(klf)	Stacks?	DL(klf)	(k-ft)	(k-ft)	HD(kips)	TYPE	DF or HF?	Edge/Interior?	HD	(Kips)	
1	A1	16.	5.50 8.00	5.00	3.50	1.00	8.50	1130.00	0.33	372.90	2.45	4.22	497	1.00	497	SW2	A1	5.00	0.76	YES	1.17	42.6	143.8	-6.33	flr-conc	HF	Edge	No HD	6.08	CMST14
1	A2	5.0	00				5.00	1130.00	0.33	372.90	2.45	3.24	647	1.00	647	2W4	A2	5.00	0.76	YES	1.17	32.6	13.2	4.31	flr-conc	DF-L	Edge	HDU4	0.00	No strap
1	A3	4.	83				4.83	1130.00	0.33	372.90	2.45	3.24	670	1.00	670	2W4	A3	10.00	0.30	NO	0.30	32.6	3.1	6.80	flr-conc	DF-L	Edge	HDU8	0.00	No strap
1	B1	9.:	50				9.50	600.00	0.41	247.83	1.63	4.98	524	1.00	524	SW2	B1	7.00	0.26	YES	0.39	50.2	15.9	3.81	flr-beam	DF-L	Edge	HDU4	0.00	No strap
1	B2	8.0	.00				8.00	600.00	0.35	208.70	1.37	4.19	524	1.00	524	SW2	B2	7.00	0.26	NO	0.26	42.2	7.6	4.62	flr-beam	DF-L	Edge	HDU5	0.00	No strap
1	B3	5.:	50				5.50	600.00	0.24	143.48	0.94	2.88	524	1.00	524	SW2	B3	3.00	0.22	NO	0.22	29.0	2.9	5.22	flr-beam	DF-L	Edge	HDU5	0.00	No strap
1	C1	3.:	50				3.50	570.00	0.18	102.31	0.67	2.02	578	0.77	750	2W3	C1	7.00	0.79	NO	0.79	20.4	4.3	5.35	flr-conc	DF-L	Edge	HDU8	0.00	No strap
1	C2	4.0	00				4.00	570.00	0.21	116.92	0.77	2.12	530	0.88	601	2W4	C2	7.00	0.79	NO	0.79	21.4	5.7	4.48	flr-conc	DF-L	Edge	HDU4	0.00	No strap
1	C3	18.	6.00	5.75	4.00	1.00	12.00	570.00	0.62	350.77	2.30	4.17	348	1.00	348	SW4	C3	3.00	0.22	NO	0.22	42.1	31.5	0.61	flr-conc	HF	Edge	HDU2	5.39	CMST14
	S :	= 74.	.83			Total OSB wall leng	th = 41.33		<u>S</u> =	2288.70	15.01	31.06	OK	Total OSB Capacity	14.99															

(feet)

(feet)

Basement Walls (Side / Side Direction)

Shear panel capacity (Wind or Seismic) = Seismic 7.09 Story shear(kips) = load balance check = Warning-Wall loads do not match story shear Story height (ft) =10.08 9.08 Shear Panel height (ft) =Total Diaphragm Area (sq ft) = 2210.00 Wall Opening Effective Plate to Trib. Area Effective Story Story Wall Opening Opening (max) Percent V(kips) Mark L(ft) Width (ft) Height (ft) to Edge (ft) Length (ft) (sq ft) Sharing (%) Trib. Area Opening (ft) В CONCRETE FOUNDATION CONCRETE FOUNDATION 13.67 1015.00 0.44 447.58 1.44 **B1** 13.67 17.33 1015.00 0.56 567.42 1.82 **B2** 17.33 CONCRETE FOUNDATION CONCRETE FOUNDATION Total OSB wall length = 13.67 S = 1015.00 3.26 **15.31 Warning-Wall** Total OSB Capacity S = 31.007.09 (feet) (kips)

* All walls designed with Force-Transfer should meet a minimum height to width

RED = Update Formula as required - Important **BLUE** = Review and update as required - Typical Input

2nd Story Walls (Side / Side Direction) Hold downs and window straps

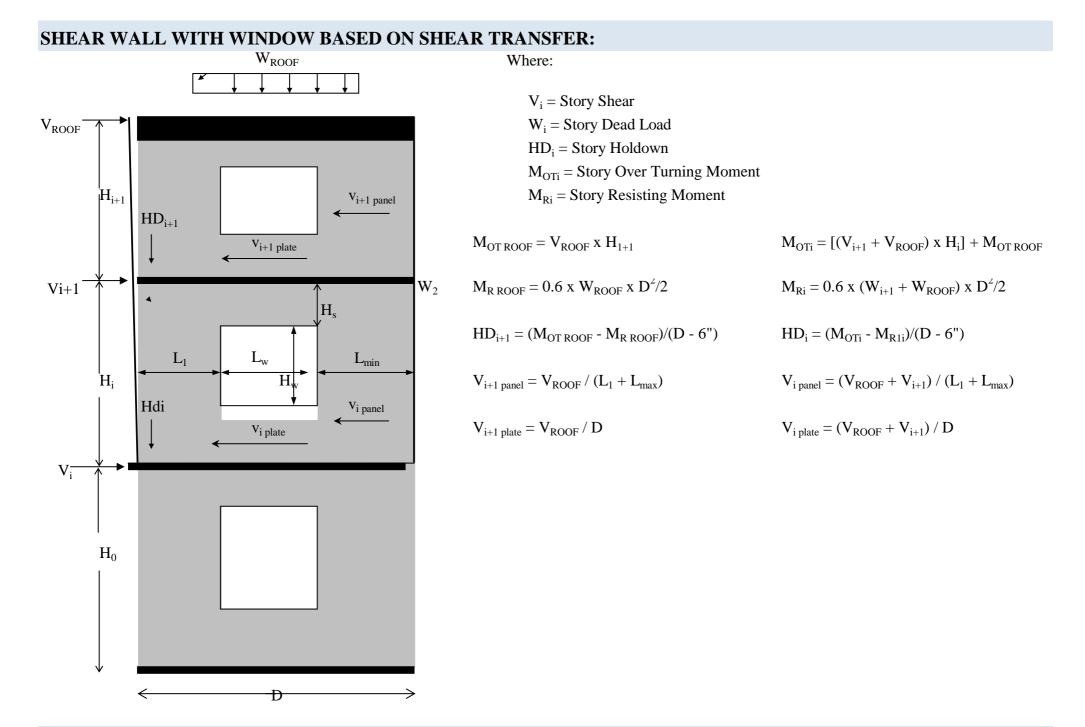
2018 Equ	ation 16-22]												
ory kips)	Sum V(kips)	Panel Shear (plf)	Height/Width Reduction (%) R = 2*L/H	Design Panel Shear (plf)	Wall Type	Wall Mark	Roof DL Trib(ft)	Story DL(klf)	Sum DL(klf)	OTM (k-ft)	RM (k-ft)	Resultant HD(kips)	HD TYPE	HD/Strap to DF or HF?	HD location Edge/Interior?	Resultant HD	Force at Window (Kips)	Window Strap
89	0.89	197	1.00	197	SW6	A1	2.00	0.41	0.41	8.1	3.7	1.08	flr-flr	HF	Edge	MST37	0.00	No strap
89	0.89	197	1.00	197	SW6	A2	2.00	0.41	0.41	8.1	3.7	1.08	flr-flr	HF	Edge	MST37	0.00	No strap
58	1.58	197	1.00	197	SW6	A3	2.00	0.13	0.13	14.3	3.7	1.42	flr-beam	HF	Edge	MSTC48B3	0.00	No strap
71	2.71	271	1.00	271	SW4	B1	2.00	0.13	0.13	24.6	5.7	1.98	flr-flr	HF	Edge	MST37	0.00	No strap
41	5.41	271	1.00	271	SW4	B2	7.00	0.20	0.20	49.1	36.4	0.65	flr-beam	HF	Edge	MSTC48B3	0.00	No strap
70	2.70	208	1.00	208	SW6	C1	2.00	0.41	0.41	24.6	47.2	-1.46	flr-beam	HF	Edge	No HD	4.99	CMST14
87	1.87	208	1.00	208	SW6	C2	7.00	0.48	0.48	17.0	17.7	-0.08	flr-flr	HF	Edge	No HD	0.00	No strap
																		-

16.05 **OK** Total OSB Capacity (kips)

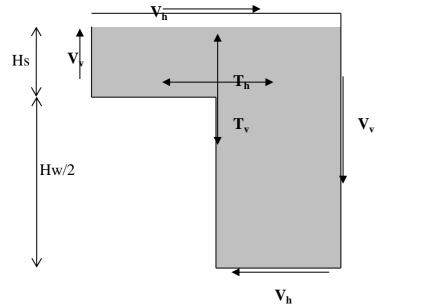
1st Story Walls (Side / Side Dir

Notes:

<u>1st Story Walls (Side / Side Direction)</u>
Hold downs and window straps


(kips)

Basement Walls (Side / Side Direction) Hold downs and window straps


Accumulated Shear = 15.31 The rest of the story shear from above has been transferred into foundation

tory kips)	Sum V(kips)	Panel Shear (plf)	Height/Width Reduction (%) R = 2*L/H	Design Panel Shear (plf)	Wall Type	Wall Mark	Floor DL Trib(ft)	Story DL(klf)	Walls/DL Stacks?	Sum DL(klf)	OTM (k-ft)	RM (k-ft)	Resultant HD(kips)	HD TYPE	HD/Strap to DF or HF?	HD location Edge/Interior?	Resultant HD	Force at Window (Kips)	Window Strap
								CONC	RETE FOUND	ATION				CONC	RETE FOUNDA	TION			
.44	6.75	494	1.00	494	SW2	B1	3.00	0.22	YES	0.48	68.0	40.3	2.10	flr-conc	DF-L	Edge	STHD14	0.00	No strap
.82	8.56	494	1.00	494	SW2	B2	8.00	0.28	YES	0.49	86.3	66.4	1.18	flr-conc	DF-L	Edge	STHD14	0.00	No strap
								CONC	RETE FOUND	ATION				CONC	RETE FOUNDA	TION			

Project		Sheet number:
	Granbois	L7
Subject		Date
	SHEAR WALL EQUATION DIAGRAM	4/19/2024

FORCE TRANSFER AROUND WINDOW CALCULATION (CANTILEVER PIER METHOD)

$$V_h = v_i_{panel} \ge L_{max}$$

 $V_v = HD_i$

 $\mathbf{V_v}$ $\mathbf{T_h} = \mathbf{V_h} \left(\mathbf{H_w} / 2 + \mathbf{H_s} \right) / \mathbf{H_s}$

 T_{y} = Is resisted by the continuous stud adjacent to the window.

Project Number:	Plan Name:	Sheet Number:
S230110-1	Granbois	L10
Engineer:	Specifics:	Date:
НК	Tank wall design (plate design)	4/19/2024

Vertical Height (a) = Horizontal Unbraced Length (b) = Wall Aspect Ratio (b/a) =	12.0 8.0 0.67	ft ft	Wall Thickness (t) = Effective Depth (d) = Active Earth Pressure (Pa) =	10 6 100	in in pcf	
--	---------------------	----------	---	----------------	-----------------	--

		P	LATE COE	FFICIENTS	5		
		(Side = Fixe)	d, Top = Free, Be	ottom = Hinged	Condition)		
Wall Aspect Ratio	Wall Section	y :	= 0	y =	b / 4	y =	b / 2
b / a	x / a	Mx	My	Mx	My	Mx	My
	TOP	0.000	0.002	0.000	0.000	0.000	-0.003
0.5	1/4	0.000	0.004	0.001	0.001	-0.001	-0.005
0.5	1/2	0.002	0.006	0.002	0.002	-0.002	-0.010
	3/4	0.007	0.008	0.002	0.002	-0.003	-0.014
	ТОР	0.000	0.004	0.000	0.001	0.000	-0.006
0.67	1/4	0.001	0.007	0.000	0.002	-0.002	-0.010
0.07	1/2	0.004	0.009	0.002	0.003	-0.003	-0.018
	3/4	0.009	0.011	0.004	0.003	-0.004	-0.022
	ТОР	0.000	0.005	0.000	0.001	0.000	-0.008
0.75	1/4	0.001	0.008	0.000	0.002	-0.003	-0.013
0.75	1/2	0.005	0.011	0.002	0.004	-0.004	-0.022
	3/4	0.010	0.012	0.005	0.004	-0.005	-0.026

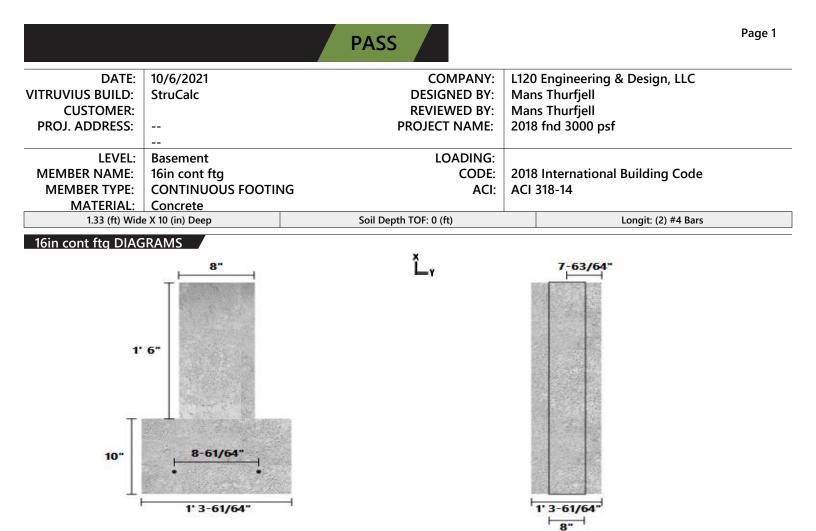
	VERTICAL REINFORCEMENT AT CORNER $(Y = 0)$									
Wall Section x / a	Coefficient C		Ult. Moment Mux = 1.6*Mx	As = Mux / 4d	Rebar Size	Rebar Spacing	Provided As			
		(kip - ft)	(kip - ft)	(in^2/ft)		(in)	(in^2/ft)			
TOP	0.0000	0.000	0.000	0.000	# 4	12	0.200			
1/4	0.0007	0.115	0.184	0.008	# 4	12	0.200			
1/2	0.0040	0.691	1.106	0.046	# 4	12	0.200			
3/4	0.0090	1.555	2.488	0.104	# 4	12	0.200			
	VER	RTICAL RE	INFORCEN	MENT CENT	$\mathbf{\Gamma ER} (\mathbf{Y} = 1)$	/ 2)				
TOP	0.000	0.000	0.000	0.000	# 4	12	0.200			
1/4	-0.002	-0.403	-0.645	0.027	# 4	12	0.200			
1/2	-0.003	-0.576	-0.922	0.038	# 4	12	0.200			
3/4	-0.004	-0.749	-1.198	0.050	# 4	12	0.200			

	HORIZONTAL REINFORCEMENT AT CORNER $(Y = 0)$									
Wall Section x / a	Coefficient C		Ult. Moment Muy = 1.6*My	As = Muy / 4d	Rebar Size	Rebar Spacing	As			
		(kip - ft)	(kip - ft)	(in^2)		(in)	(in^2/ft)			
TOP	0.004	0.691	1.106	0.046	# 4	12	0.200			
1/4	0.007	1.152	1.843	0.077	# 4	12	0.200			
1/2	0.009	1.613	2.580	0.108	# 4	12	0.200			
3/4	0.011	1.843	2.949	0.123	# 4	12	0.200			
	HORI	ZONTAL R	EINFORCH	EMENT CE	NTER $(Y =$	1 / 2)				
TOP	-0.006	-1.094	-1.751	0.073	# 4	6	0.400			
1/4	-0.010	-1.786	-2.857	0.119	# 4	6	0.400			
1/2	-0.018	-3.110	-4.977	0.207	# 4	6	0.400			
3/4	-0.022	-3.802	-6.083	0.253	# 4	6	0.400			

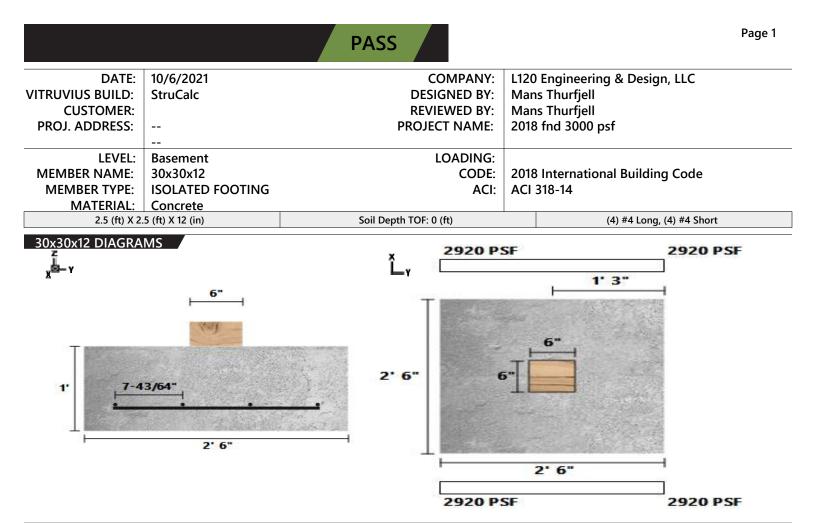
Project Number:	Plan Name:	Sheet Number:
S230110-1	Granbois	L10
Engineer:	Specifics:	Date:
НК	Window Well Wall design (plate design)	4/19/2024

Vertical Height (a) = Horizontal Unbraced Length (b) = Wall Aspect Ratio (b/a) =	6.0 9.0 1.50	ft ft	Wall Thickness (t) = Effective Depth (d) = Active Earth Pressure (Pa) =	6 4 60	in in pcf	
--	--------------------	----------	---	--------------	-----------------	--

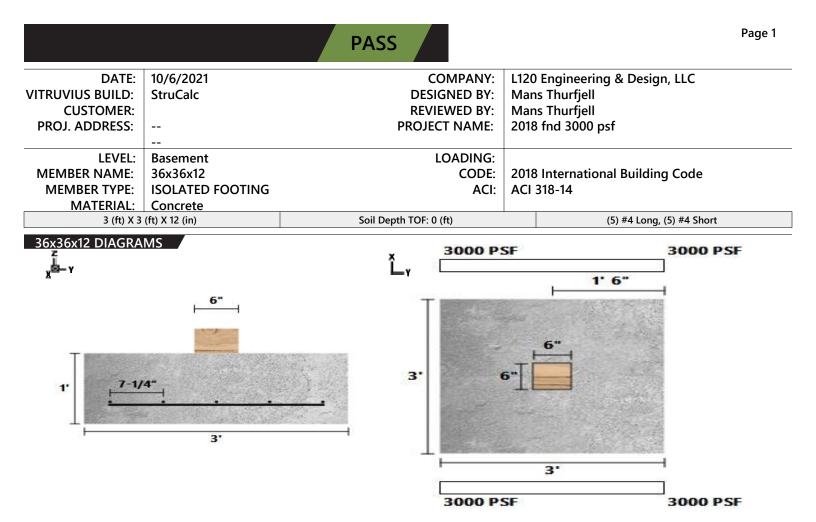
PLATE COEFFICIENTS (Side = Fixed, Top = Free, Bottom = Hinged Condition)											
Wall Aspect Ratio	Wall Section	y =	= 0	y =	b / 4	y =	b / 2				
b / a	x / a	Mx	My	Mx	My	Mx	My				
	TOP	0.000	0.017	0.000	0.003	0.000	-0.034				
1.25	1/4	0.005	0.020	0.002	0.005	-0.008	-0.042				
1.25	1/2	0.017	0.023	0.009	0.009	-0.010	-0.045				
	3/4	0.021	0.017	0.013	0.009	-0.009	-0.044				
	ТОР	0.000	0.027	0.000	0.005	0.000	-0.052				
1.50	1/4	0.009	0.028	0.003	0.008	-0.012	-0.059				
1.50	1/2	0.022	0.027	0.012	0.011	-0.013	-0.063				
	3/4	0.027	0.020	0.017	0.011	-0.010	-0.052				
	ТОР	0.000	0.027	0.000	0.005	0.000	-0.052				
1.5	1/4	0.009	0.028	0.003	0.008	-0.012	-0.059				
1.5	1/2	0.022	0.027	0.012	0.011	-0.013	-0.063				
	3/4	0.027	0.020	0.017	0.011	-0.010	-0.052				


VERTICAL REINFORCEMENT AT CORNER $(Y = 0)$									
Wall Section x / a	Coefficient C	$Moment$ $Mx = C*Pa*a^{3}$ (kip - ft)	Ult. Moment Mux = 1.6*Mx (kip - ft)	As Required As = Mux / 4d (in^2/ft)	Rebar Size	Rebar Spacing (in)	Provided As (in ² /ft)		
ТОР	0.0000	0.000	0.000	0.000	# 4	12	0.200		
1/4	0.0090	0.117	0.187	0.012	# 4	12	0.200		
1/2	0.0220	0.285	0.456	0.029	# 4	12	0.200		
3/4	0.0270	0.350	0.560	0.035	# 4	12	0.200		
	VEI	RTICAL RE	INFORCEN	MENT CEN	TER $(Y = 1)$	/ 2)			
TOP	0.000	0.000	0.000	0.000	# 4	12	0.200		
1/4	-0.012	-0.156	-0.249	0.016	# 4	12	0.200		
1/2	-0.013	-0.168	-0.270	0.017	# 4	12	0.200		
3/4	-0.010	-0.130	-0.207	0.013	#4	12	0.200		

HORIZONTAL REINFORCEMENT AT CORNER $(Y = 0)$									
Wall SectionCoefficientx / aC		Moment My = C*Pa*a ³	MomentUlt. Moment $My = C*Pa*a^3$ $Muy = 1.6*My$		Rebar Size	Rebar Spacing	Provided As		
		(kip - ft)	(kip - ft)	(in ²)		(in)	(in^2/ft)		
ТОР	0.027	0.350	0.560	0.035	# 4	12	0.200		
1/4	0.028	0.363	0.581	0.036	# 4	12	0.200		
1/2	0.027	0.350	0.560	0.035	# 4	12	0.200		
3/4	0.020	0.259	0.415	0.026	# 4	12	0.200		
	HORI	ZONTAL R	REINFORCI	EMENT CE	NTER $(Y =$	1 / 2)			
ТОР	-0.052	-0.674	-1.078	0.067	# 4	6	0.400		
1/4	-0.059	-0.765	-1.223	0.076	# 4	6	0.400		
1/2	-0.063	-0.816	-1.306	0.082	# 4	6	0.400		
3/4	-0.052	-0.674	-1.078	0.067	# 4	6	0.400		

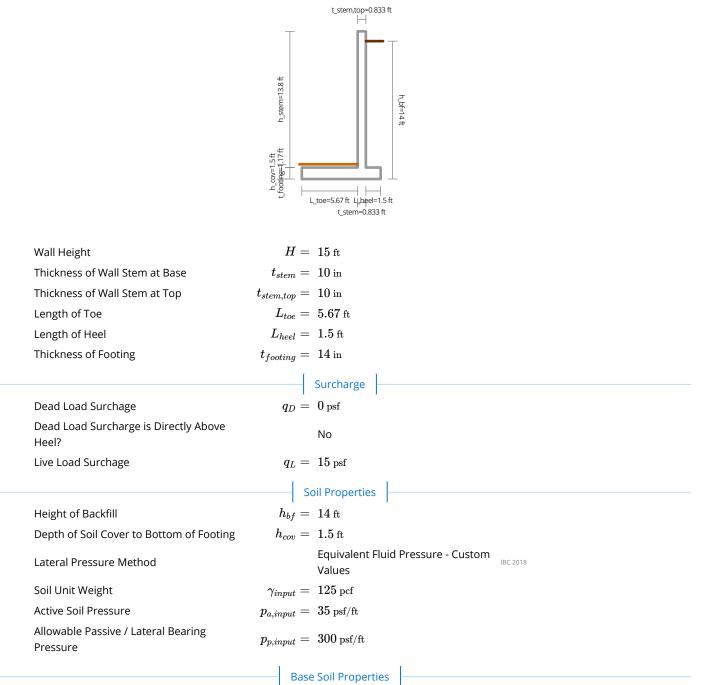


Foundation Design



MATERIAL PRO	PERTIES						
FOOTING							
fc' (psi)	Ec (psi)	Density (lbf/ft ³)	Width (ft)		Depth (in)		
2500	2880952	145	1.33		10		
STEM WALL							
Width (in)	Height (in)	Material	Offset (in)				
8	18	Concrete	0				
SOIL							
Bearing Strength (lbf/ft ²)) Density (lbf/ft ³)	Cohesion	Friction Angle		Depth (ft)	Rankine Coefficient (Kp)	
3000	140	0	30		0	0	
REBAR							
Bar Size #	Transv. Spacing (in)	# Longit. Bars	fy (psi)		Es (psi)		
4	None	2	40000		2.9E+07		
PASS-FAIL							
		PASS/FAIL	MAGNITUDE	STRENGTH	LOAD	СОМВО	
Soil Beari	ng Pressure (lbf/ft²)	PASS (1.1%)	2966.2	3000.0	I	D+L	
Or	ne-Way Shear Y (lbf)	PASS (91.2%)	513.2	5850.0	1.2D+1	.6L+0.5Lr	
	Moment Y (lbf-ft)	PASS (42.5%)	920.0	1600.0	1.2D+1	.6L+0.5Lr	
LOAD LIST							
Туре	Left Magnitude	Right Magnitude	Load Start (f	t)	Load End (ft)	Load Type	Direction
Uniform (lbf/ft)	1800	1800	0		1	Dead	Z
Uniform (lbf/ft)	2000	2000	0		1	Live	Z
Stemwall Weight (lbf/ft)	145	145	0		1	Dead	Z

MATERIAL PRO	OPERTIES						
FOOTING							
fc' (psi)	Ec (psi)	Density (lbf/ft ³)	Width (ft)		Length (ft)	Depth (in)	Volume (ft ³)
2500	2880952	145	2.5		2.5	12	6.25
CALCULATION VARIA	BLES						
Bo (in)	Ф-Х	Φ-Υ					
58	0	0					
COLUMN							
Width (in)	Length (in)	Material	Offset (in)				
6	6	Wood	0				
SOIL							
Bearing Strength (lbf/f	t ²) Density (lbf/ft ³)	Cohesion	Friction Angle		Depth (ft)	Rankine Coefficient (Kp)	
3000	140	0	30		0	3	
REBAR							
Bar Size #	# Bars Long	# Bars Short	fy (psi)		Es (psi)		
4	4	4	40000		2.9E+07		
PASS-FAIL							
		PASS/FAIL	MAGNITUDE	STRENGTH	LOAD	СОМВО	
Soil Bea	aring Pressure (lbf/ft ²)	PASS (2.7%)	2920.0	3000.0	[)+L	
Two-Way	Shear (Punching) (lbf)	PASS (65.4%)	25600.0	73950.0	1.2D+1	6L+0.5Lr	
	One-Way Shear X (lbf)	PASS (84.4%)	2986.7	19125.0	1.2D+1	6L+0.5Lr	
	Moment X (lbf-ft)	PASS (18.1%)	5120.0	6250.0	1.2D+1	6L+0.5Lr	
	One-Way Shear Y (lbf)	PASS (84.4%)	2986.7	19125.0	1.2D+1	6L+0.5Lr	
	Moment Y (lbf-ft)	PASS (18.1%)	5120.0	6250.0	1.2D+1	6L+0.5Lr	
	Crushing (psi)	PASS (48.5%)	711.1	1381.3	1.2D+1	6L+0.5Lr	
LOAD LIST							
Туре	Left Magnitude	Right Magnitude	e Load Start (f	t)	Load End (ft)	Load Type	Directio
Point (lbf)	9000	-	0		-	Dead	Z
Point (lbf)	9250	-	0		-	Live	Z



MATERIAL PR	OPERTIES						
FOOTING							
fc' (psi)	Ec (psi)	Density (lbf/ft ³)	Width (ft)		Length (ft)	Depth (in)	Volume (ft ³)
2500	2880952	145	3		3	12	9
CALCULATION VARIA	ABLES						
Bo (in)	Ф-Х	Φ-Υ					
58	0	0					
COLUMN							
Width (in)	Length (in)	Material	Offset (in)				
6	6	Wood	0				
SOIL							
Bearing Strength (lbf/	ft ²) Density (lbf/ft ³)	Cohesion	Friction Angle		Depth (ft)	Rankine Coefficient (Kp)	
3000	140	0	30		0	3	
REBAR							
Bar Size #	# Bars Long	# Bars Short	fy (psi)		Es (psi)		
4	5	5	40000		2.9E+07		
PASS-FAIL							
		PASS/FAIL	MAGNITUDE	STRENGTH	LOAD	СОМВО	
Soil Bea	aring Pressure (lbf/ft ²)	PASS (0.0%)	3000.0	3000.0	D	+L	
Two-Way	Shear (Punching) (lbf)	PASS (48.6%)	38000.0	73950.0	1.2D+1.6	6L+0.5Lr	
	One-Way Shear X (lbf)	PASS (70.1%)	6861.1	22950.0	1.2D+1.6	6L+0.5Lr	
	Moment X (lbf-ft)	PASS (60.0%)	9895.8	24715.7	1.2D+1.6	6L+0.5Lr	
	One-Way Shear Y (lbf)	PASS (70.1%)	6861.1	22950.0	1.2D+1.6	6L+0.5Lr	
	Moment Y (lbf-ft)	PASS (60.0%)	9895.8	24715.7	1.2D+1.6	6L+0.5Lr	
	Crushing (psi)	PASS (23.6%)	1055.6	1381.3	1.2D+1.6	5L+0.5Lr	
LOAD LIST							
Туре	Left Magnitude	Right Magnitude	e Load Start (f	t)	Load End (ft)	Load Type	Directio
Point (lbf)	13000	-	0		-	Dead	Z
Point (lbf)	14000	-	0		-	Live	Z

Created with ClearCalcs.com

	&OLHQW.	' D W H ຼJul 29, 2022
	\$ X W K R U Harrison Kliegl	- R E _
	3 U R M H F W ្3500 PSF Retaining Walls	6XEMHFW OD[5HWDLQLQJ :
	5 H I H U H Q F H V IBC 2018, ASCE 7-1	6
	Stability Summary	
Total Sliding Forces	$F_{sliding}=~3.49~{ m kip/ft}$	
Total Resistance to Sliding		IBC 2018, CI 1806.3
Lateral Force Transmitted Restraint	to Footing $F_{restraint}=0.891{ m kip/ft}$	
Total Overturning Momer	nt $M_{overturn} = 16.4 ~{ m kip} \cdot { m ft}/{ m ft}$	
Total Restoring Moment	$M_{restore}=~34.3~{ m kip} \cdot { m ft}/{ m ft}$	
Overturning Factor of Safe	ety $FS_{overturn} = 2.09$	
Maximum Bearing Pressu	re $q_{max}=~1210~{ m psf}$	
Soil Allowable Bearing Ca	pacity $q_a=~3500~{ m psf}$	
	Stem Summary	
Moment Demand of Wall	1	
Moment Capacity of Wall	Stem $\phi M_{n,stem} = 26.8 ~{ m kip} \cdot { m ft} / { m ft}$	ACI 318-14, CI 22.3
Shear Demand of Wall Ste	em $V_{u,stem}=~4.7~{ m kip/ft}$	ACI 318-14, CI 9.4.3
Shear Capacity of Wall Ste	em $\phi V_{n,stem}=~7.37~{ m kip/ft}$	ACI 318-14, CI 22.5
	Heel Summary	
Moment Demand of Heel	1 I I	ACI 318-14, CI 13.2.7.1
Moment Capacity of Heel	$\phi M_{n,heel}=24.3{ m kip}\cdot{ m ft}/{ m ft}$	ACI 318-14, CI 22.3
Shear Demand of Heel	$V_{u,heel}=~3.24~{ m kip/ft}$	ACI 318-14, CI 9.4.3
Shear Capacity of Wall Ba	, ,	ACI 318-14, CI 22.5
Managet Damaged a (Tag	M DO 7 1: 0 /0	
Moment Demand of Toe	$M_{u,toe}=~22.7~{ m kip}\cdot{ m ft}/{ m ft}$	ACI 318-14, CI 13.2.7.1
Moment Capacity of Toe	$\phi M_{n,toe}=~24.3~{ m kip}\cdot{ m ft}/{ m ft}$	ACI 318-14, CI 22.3
Shear Demand of Toe	$V_{u,toe} = 6.28 ext{ kip/ft}$	ACI 318-14, CI 9.4.3
Shear Capacity of Toe	$\phi V_{n,toe}=~9.68~{ m kip}/{ m ft}$	ACI 318-14, CI 22.5

- Concrete Wall - Soil Cover - Backfill

Source of Soil Properties		Same as Backfill	
Allowable Bearing Capacity of Base Soil	$q_{a,input} =$	$3500 \mathrm{psf}$	
Soil-Footing Friction Coefficient	$\mu_{input} =$	0.45	
Base Soil Cohesion	$c_{base,input} =$	$= 0 \mathrm{psf}$	
Maximum Allowable Cohesion as Proportion of Dead Load	$c_{max} =$	0.5	
Soil-Footing Friction Coefficient	$\mu =$	0.45	If presumptive values are used: IBC 2018 Table 1806.2
Base Soil Cohesion	$c_{base} =$	$0 \mathrm{psf}$	If presumptive values are used: IBC 2018 Table 1806.2

Height of Water Table	$h_{water}=~0~{ m ft}$	
Unit Weight of Water	$\gamma_{water}=~62.4~{ m pcf}$	
	Concrete Properties	
Concrete Strength	$f_c^\prime=~2500~{ m psi}$	ACI 318-14 Table 19.2.1.1
Concrete Weight Classification	Normalweight	ACI 318-14, CI 19.2.4.2
Reinforcement Yield Strength	$f_y=~60000~{ m psi}$	ACI 318-14 Table 20.2.2.4a
	Stem Reinforcement	
Stem Concrete Cover	$c_{stem}=~1.5~{ m in}$	ACI 318-14 Table 20.6.1.3.1
Main Reinforcement Size	#5	
Main Reinforcement Spacing	$s_{stem}=~4.5~{ m in}$	ACI 318-14, CI 25.2.1 (minimum spacing) and CI 7.7.2 (maximum spacing)
	Heel Reinforcement (Top Bars)	
Heel Concrete Cover	$c_{heel}=~3$ in	ACI 318-14 Table 20.6.1.3.1
Heel Reinforcement Size	#4	
Heel Reinforcement Spacing	$s_{heel}=~4.5$ in	ACI 318-14, CI 25.2.1 (minimum spacing) and CI 7.7.2 (maximum spacing)
	Toe Reinforcement (Bottom Bars)	
Include Toe Reinforcement?	Yes	
Toe Concrete Cover	$c_{toe}=~3~{ m in}$	ACI 318-14 Table 20.6.1.3.1
Toe Reinforcement Size	#4	
Toe Reinforcement Spacing	$s_{toe}=~4.5~{ m in}$	ACI 318-14, CI 25.2.1 (minimum spacing) and CI 7.7.2 (maximum spacing)
SI	nrinkage / Temperature Reinforceme	nt
Shrinkage/Temperature Reinforcement Size	#4	
Stem Shrinkage/Temperature Bar Spacing	$s_{\ell,stem}=~10$ in	ACI 318-14, CI 7.7.2.3
Footing Shrinkage/Temperature Bar Spacing	$s_{\ell,footing}=~6$ in	ACI 318-14, CI 7.7.2.3
	Stem Reinforcement Depth & Spacing	g
Depth to Stem Reinforcement	$d_{stem}=~8.19$ in	
Area of Vertical Tension Reinforcement	$A_{s,stem}=~0.827~{ m in^2/ft}$	
	Heel Reinforcement Depth & Spacing	,
Heel Depth to Reinforcement	$d_{heel}=~10.7~{ m in}$	ACI 318-14, CI 13.3.1.2
Area of Heel Reinforcement	$A_{s,heel}=~0.533~{ m in^2/ft}$	
		.
Toe Depth to Reinforcement	Toe Reinforcement Depth & Spacing $d_{toe}=~10.7~{ m in}$	ACI 318-14, CI 13.3.1.2
Area of Toe Reinforcement	$A_{s,toe}=~0.533~{ m in^2/ft}$	
Design Code for Load Combinations	Design Criteria	Code (IBC) 2018
Design Code for Load Combinations	code = International Building	
Retaining Wall Movement Condition Footing Restrained Against Sliding?	Active Case (Ka) Yes	
Consider Resisting Soil Pressures for	105	

Consider Soil Above Toe for Stability Checks?	No	
Consider Resisting Pressure from Soil Above Toe for Strength Design?	No	
Sliding Minimum Factor of Safety	$FS_{\min,sliding}$ 1 $\!\!=\!\!5$	IBC 2018, CI 1807.2.3
Overturning Minimum Factor of Safety	$FS_{\mathrm{min},ovt}=1.5$	IBC 2018, CI 1807.2.3
Unfactorec	l Vertical and Horizontal Loads for Stability Design	

the second se			
Backfill Soil Width	$w_s =$	$1 \mathrm{ft}, 6 \mathrm{in}$	
Weight of Wall Stem	$W_{stem} =$	$1.73~\mathrm{kip/ft}$	
Weight of Heel	$W_{heel} =$	$0.263~\rm kip/ft$	
Weight of Toe	$W_{toe} =$	$0.992 \; \rm kip/ft$	
Weight of Backfill Soil	$W_{bf} =$	$2.41~{ m kip/ft}$	
Lateral Force Due to Dead Load Surcharge	$P_D =$	$0 \; \rm kip/ft$	
Lateral Force Due to Live Load Surcharge	$P_L =$	$0.0588 \rm \; kip/ft$	
Lateral Force Due to Backfill	$P_{bf} =$	$3.43~{ m kip/ft}$	
Passive Force of Soil on Footing	$P_{p,footing} =$	$0.321~\rm kip/ft$	IBC 2018, CI 1806.3.3
Passive Force of Soil Above Toe on Stem	$P_{p,stem} =$	$0.0167~\rm kip/ft$	
Active Force of Soil on Footing	$P_{a,footing} =$	$0.0374~{\rm kip/ft}$	IBC 2018, Cl 1806.3.3
Active Force of Soil Above Toe on Stem	$P_{a,stem} =$	$0.00194~\rm kip/ft$	

Tabulated Soil Loads

Vertical Loads (Resisting)	: =				
Element	Unfactored Forces $W_{unfactored}$ (kip/ft)	Load Factor ξ	Weight W (kip/ft)	Moment Arm y (ft)	Restoring Moment $M_{restore}$ (kip \cdot ft/ft)
Dead Load Surcharge	0	1	0	7.25	0
Wall Stem	1.73	1	1.73	6.09	10.5
Wall Footing	1.4	1	1.4	4	5.6
Soil Cover Above Toe	0.236	1	0.236	2.84	0.67
Backfill Above Water Table	2.41	1	2.41	7.25	17.5

Live Load Surcharge Vertical Loads (Soil : $_L =$

Bearing)

Soil

	Element	Unfactored Forc	es $W_{unfactored}$ (kip	/ft) Load Fact	torξ W	/eight W (kip/ft)	Moment Arm	n y (ft) Restorin	ng Moment $M_{restore}$ (kip \cdot ft/ft)
Live Loa	ad Surcharge	e	0.02	25	1	0.0225		7.25	0.163
Lateral Loa	ds			+ =				IBC 2018, Cl	1605.2
Elem	ient	Unfactored Forces	Hunfactored (kip/ft)	Load Factor §	Later	al Load H (kip/ft)	Moment Ari	m y (ft) Overtu	rning Moment $M_{overturn}$ (kip \cdot ft/ft)
Dead Load	Surcharge		C)	1	0		7	0
Live Load S	Surcharge		0.0588	3	1	0.0588		7	0.412
Backfill			3.43	3	1	3.43		4.67	16
Passive Soi	l Loads (Resis	ting Sliding)) R=					
	Eler	ment	Unfactored Pass	ive Forces $F_{p,unfe}$	actored (kip/	ft) Load Factor	ξ Passive	Lateral Resisting Lo	ad F_p (kip/ft)
	Soil Agains	st Toe Face			0.32	21 C).6		0.193
Active Soil I	_oads (Resisti	ng Overturnin	g)) C=					
Element	Unfactor	red Active Forces $F_{a,u}$	nfactored (kip/ft)	Load Factor ξ	Active La	ateral Resisting Loa	ad F_a (kip/ft)	Moment Arm y (ft) Active Resisting Moment M_a (kip
gainst Toe	Face		0.0374	0.6			0.0225	0.4	46 0.
			Stat	oility Analys	is - Slid	ing Loads			·

Total Horizontal Loads (Sliding)


Total Passive L	oads (Resis oads (Resist	0.		$_{al}=~5.77$ k $_{al}=~0.193$					
			1	Analysis - O		Loads			
Total Overturn	-			$_{er} = 16.4$ k					
Total Restoring	g Moment fr	rom Gravity	$M_{res,gr}$	$_{av}=34.3$ k	tip∙ft/ft				
			Stability	Analysis - So	oil Bearing	Check –			
Eccentricity (Liv	ve Load Not	t Over Heel)		e = 0 ft, 10					
Eccentricity (Liv		er Heel)		L = 0 ft, 10	0.7 in				
Bearing Pressu	ires		% ation	J= Live Load Not O	wer Heel a (pat)	Live Load O	ver Heel q_L (psf)	BC 2018, Cl 1605.2	
		Toe			1210		1210		
		At d from	stem face		626		630		
		Stem face			516		521	_	
		Heel			228		238		
		11661			220		230		
		Unfac	tored Vertica	al Loads for	Structural	Strength [Design –		
Lateral Force o	on Stem Due	e to Dead Load	d PD ster	$_{n}=~0$ kip/f	ft				
Surcharge			2,8001	10 17					
Lateral Force o Surcharge	on Stem Due	e to Live Load	$P_{L,ster}$	$_{n} = 0.053$	$9~{ m kip}/{ m ft}$				
Lateral Force o	on Stem Due	e to Backfill	Phf ster	$_n=~2.88$ k	ip/ft				
			- 0],sici	<i>n</i>	- F /				
			T.			. 1			
			L.	ural Strengtl	h Design L	oads			
Lateral Stem Lo		Unfactored Forces <i>H</i>	6	/=		1		BC 2018, Cl 1605.2	ment $M_{u\ stern}$ (kip · ft/ft)
Lateral Stem Lo Element Dead Load St		Unfactored Forces <i>H</i>	6	/=	h Design L	1	Moment Arr		ment $M_{u,stem}$ (kip \cdot ft/ft) 0
Element	urcharge		I (kip/ft) Load F	$I = \frac{1}{2}$		pads H_u (kip/ft)	Moment Arr	n y (ft) Stem Moi	
Element Dead Load Su	urcharge		1 (kip/ft) Load f 0	/ = Factor ξ Factor 1.6		pads H_u (kip/ft)	Moment Arr	6.42	0
Element Dead Load Su Live Load Su Backfill	urcharge		6 7 (kip/ft) Load F 0 0.0539 2.88	/ = Factor <u>ξ</u> Factor 1.6 1.6 1.6		0.0862	Moment Arr	6.42 Stem Mon 6.42	0 0.553
Element Dead Load Su Live Load Su Backfill Heel Loads	urcharge	C	6 7 (kip/ft) Load F 0 0.0539 2.88		red Horizontal L	0.0862	Moment Arr	n y (ft) Stem Mon 6.42	0 0.553
Element Dead Load Su Live Load Su Backfill Heel Loads	ncharge ment	C	I Image: Constraint of the second secon		fed Horizontal L	upads H _u (kip/ft) 0.0862 4.61	Moment Arr	n y (ft) Stem Mon 6.42	0 0.553 19.7
Element Dead Load Su Live Load Su Backfill Heel Loads Elem Dead Load Su	ment Ircharge	C	I Image: Constraint of the second secon	/ = Factor <u>{</u> Factor 1.6 1.6 1.6 / = 0 Load Factor { 0 1.	fed Horizontal L	upads H _u (kip/ft) 0.0862 4.61	Moment Arr Moment Arr Moment A	n y (ft) Stem Mor 6.42 6.42 4.28	0 0.553 19.7
Element Dead Load Su Live Load Su Backfill Heel Loads Eler Dead Load Su Live Load Su	ment Ircharge	C	6 ((kip/ft) Load F 0 0.0539 2.88 + td Forces W (kip/ft)	$/ =$ Factor ξ Factor 1.6 1.6 1.6 $/ =$ $0 Load Factor \xi$ 5 1.	Factored V	Veight W_u (kip/ft)	Moment Arr	y (ft) Stem Mor 6.42 - 6.42 - 4.28 - rm y (ft) Heel Mor 0.75 -	0 0.553 19.7 oment $M_{u,heel}$ (kip \cdot ft/ft) 0
Element Dead Load Su Live Load Su Backfill Heel Loads Eler Dead Load Su Live Load Su Heel Weight	ment Ircharge Ircharge Ircharge	Unfactore	6 7 (kip/ft) Load F 0 0.0539 2.88 + td Forces W (kip/ft) 0.0222	/ = Factor ξ Factor 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 5 1. 3 1.	Factored No. 2	veight W_u (kip/ft)	Moment Arr 2 1 36 5 4 5	y (t) Stem Mon 6.42 - 4.28 - mr y (ft) Heel Mon 0.75 -	0 0.553 19.7 oment $M_{u,heel}$ (kip · ft/ft) 0 0.027
Element Dead Load Su Backfill Heel Loads Dead Load Su Live Load Su Heel Weight Backfill Abov	ment rcharge rcharge rcharge rcharge	Unfactore	6 7 (kip/ft) Load F 0 0.0539 2.88 + ed Forces W (kip/ft) 0.0222 0.262 2.4	/ = Factor ξ Factor 1.6 1.6 1.6 1.6 / = 0 0 Load Factor ξ 0 1. 5 1. 3 1. 1 1.	Factored No. 2	veight W_u (kip/ft)	Moment Arr 2 1 36 5 4 5	y (t) Stem Mon 6.42 - 4.28 - mr y (th) Heel Mon 0.75 - 0.75 - 0.75 -	0 0.553 19.7 ment $M_{u,heel}$ (kip · ft/ft) 0 0.027 0.236
Element Dead Load Su Live Load Su Backfill Heel Loads	ment rcharge rcharge rcharge rcharge	Unfactore	6 7 (kip/ft) Load F 0 0.0539 2.88 + + ed Forces W (kip/ft) 0.0222 0.262 2.4 7 / 1	/ = Factor ξ Factor 1.6 1.6 1.6 1.6 / = 0 0 Load Factor ξ 0 1. 5 1. 3 1. 1 1.	Factored V Factored V	veight W_u (kip/ft)	Moment Arr Moment Arr Moment A Moment A Moment A Moment A Moment A Moment A	y (t) Stem Mon 6.42 - 4.28 - mr y (th) Heel Mon 0.75 - 0.75 - 0.75 -	0 0.553 19.7 ment $M_{u,heel}$ (kip · ft/ft) 0 0.027 0.236
Element Dead Load Su Backfill Heel Loads Dead Load Su Live Load Su Heel Weight Backfill Abov	ment rcharge rcharge rcharge rcharge re Water T ear)	C Unfactore	6 7 (kip/ft) Load F 0 0.0539 2.88 + + ed Forces W (kip/ft) 0.0222 0.263 2.4 7 / 1 Unfactore		Factored V Factored V	veight W_u (kip/ft) 0.0862 4.61 0.03 0.03 0.31	Moment Arr Moment Arr Moment A Moment A Moment A Moment A Moment A Moment A	n y (ft) Stem Mor 6.42 4.28 4.28 1.22 0.75 0.75 0.75 0.75 0.75	0 0.553 19.7 ment $M_{u,heel}$ (kip · ft/ft) 0 0.027 0.236
Element Dead Load Su Backfill Heel Loads Dead Load Su Live Load Su Heel Weight Backfill Abov	ment rcharge rcharge rcharge rcharge re Water T ear)	C Unfactore 'able Element ds Soil Press	6 7 (kip/ft) Load F 0 0.0539 2.88 + + ed Forces W (kip/ft) 0.0222 0.263 2.4 7 / 1 Unfactore		Factored N \$ Factored N 2 - 6 - 2 - 4 - 7 - 6 - 2 - 7 -	veight W_u (kip/ft) 0.0862 4.61 0.03 0.03 0.31 2.8 0.04 Factor ξ	Moment Arr Moment Arr Moment A Moment A Moment A Moment A Moment A Moment A	n y (ft) Stem Mor 6.42 6.42 4.28 mr y (ft) Heel Mor 0.75 0.75 0.75 0.75 Load V _u (kip/ft)	0 0.553 19.7 ment $M_{u,heel}$ (kip · ft/ft) 0 0.027 0.236
Element Dead Load Su Backfill Heel Loads Dead Load Su Live Load Su Heel Weight Backfill Abov Toe Loads (She	urcharge rcharge ment urcharge rcharge re Water T ear) Upward Toe Wa	C Unfactore 'able Element ds Soil Press	6 ((kip/ft) Load F 0 0.0539 2.88 + + ed Forces W (kip/ft) 0.022! 0.261 2.4 7 / 1 Unfactore ure		Factored V Factored V Factored V C C C C C C C C C C C C C	veight W_u (kip/ft) 0.0862 4.61 0.031 0.031 0.31 2.8 0.04 Factor ξ 1.6	Moment Arr Moment Arr Moment A Moment A Moment A Moment A Moment A Moment A	y (ti) Stem Mori 6.42 - 6.42 - 4.28 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 -	0 0.553 19.7 ment $M_{u,heel}$ (kip · ft/ft) 0 0.027 0.236
Element Dead Load Su Backfill Heel Loads Dead Load Su Live Load Su Heel Weight Backfill Abov	urcharge rcharge incharge incharge rcharge re Water T ear) Upward Toe Wa	C Unfactore 'able Element ds Soil Press	6 7 (kip/ft) Load F 0 0.0539 2.88 + + ed Forces W (kip/ft) 0.0222 0.263 2.4 7 / 1 Unfactore		Factored V Factored V Factored V C C C C C C C C C C C C C	2 0.0862 4.61 Veight W _u (kip/ft) 0.03 0.31 2.8 0ad Factor ξ 1.6 0.9	Moment Arr Moment Arr Moment Arr Moment Arr Moment A	y (ti) Stem Mori 6.42 - 6.42 - 4.28 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 -	0 0.553 19.7 ment $M_{u,heel}$ (kip · ft/ft) 0 0.027 0.236 2.17
Element Dead Load Su Backfill Heel Loads Dead Load Su Live Load Su Heel Weight Backfill Abov Toe Loads (She	urcharge rcharge ment urcharge rcharge re Water T ear) Upward Toe Wa	C Unfactore 'able Element ds Soil Press eight	6 7 (kip/ft) Load f 0 0.0539 2.88 + + 10 0.0222 0.263 2.4 7 / 10 Unfactore ure 7 / 10 7		red Horizontal L 5 Factored V 2 6 2 2 V _d (kip/ft) 1 4.39 -0.835	veight W _u (kip/ft) 0.0862 4.61 Veight W _u (kip/ft) 0.03 0.31 2.8 0.04 Factor ξ 1.6 0.9	Moment Arr Moment Arr Moment Arr Moment Arr Moment A	n y (ft) Stem Mor 6.42 6.42 4.28 rm y (ft) Heel Mor 0.75 0.75 0.75 0.75 Load V _u (kip/ft) T.03 -0.752	0 0.553 19.7 0 0.027 0.236 2.17
Element Dead Load Su Backfill Heel Loads Dead Load Su Live Load Su Live Load Su Heel Weight Backfill Abov Toe Loads (She	urcharge rcharge ment urcharge rcharge re Water T ear) Upward Toe Wa	C Unfactore able Element ds Soil Press eight ment oil Pressure	6 7 (kip/ft) Load f 0 0.0539 2.88 + + 10 0.0222 0.263 2.4 7 / 10 Unfactore ure 7 / 10 7	$/ =$ Factor ξ Factor 1.6 1.6 1.6 1.6 7 = 0 Load Factor ξ 0 1. 5 1. 3 1. 1 1. $V =$ ed Shear Load at d $M =$ Loads $P(kip/ft)$	red Horizontal L § Factored V 2 6 2 2 V _d (kip/ft) 1 4.39 -0.835 ↓ Load Factor ℓ	A constraints of the second sec	Moment Arr 0 2 i <	n y (ft) Stem Mor 6.42 6.42 4.28 rm y (ft) Heel Mor 0.75 0.75 0.75 0.75 Load V _u (kip/ft) T.03 -0.752 Morment M _u (kip - ft/	0 0.553 19.7 ment <i>M_{u,heel}</i> (kip · fr/ft) 0 0.027 0.236 2.17

Resistance Factor in Bending	$\phi_b=~0.9$	ACI 318-14. Table 21.2.2
Factored Moment Capacity	$\phi M_n = ~26800~{ m lb} \cdot { m ft}/{ m ft}$	ACI 318-14, 8.5.1.1a
	Heel Flexural Analysis (ACI 318-14, Cl 22.2)	
Tension Reinforcement Strain	$arepsilon_t = 0.0188$	ACI 318-14, Cl 22.2.2.4.1 and Cl 7.3.3.1 for strain lin
Resistance Factor in Bending	$\phi_b=~0.9$	ACI 318-14. Table 21.2.2
Factored Moment Capacity	$\phi M_{n,heel}=~24300~{ m lb}\cdot{ m ft}/{ m ft}$	ACI 318-14, 8.5.1.1a
	Toe Flexural Analysis (ACI 318-14, Cl 22.2)	
Tension Reinforcement Strain	$arepsilon_t = ~0.0188$	ACI 318-14, Cl 22.2.2.4.1 and Cl 7.3.3.1 for strain lin
Resistance Factor in Bending	$\phi_b=~0.9$	ACI 318-14. Table 21.2.1
Factored Moment Capacity	$\phi M_{n,toe}=~24300$ lb \cdot ft/ft	ACI 318-14, 8.5.1.1a
	Shear in Stem (ACI 318-14, Cl 22.5)	
Resistance Factor in Shear	$\phi_v=~0.75$	ACI 318-14 Table 21.2.1
Factored Stem Shear Capacity	$\phi V_{n,stem}=~7370~{ m plf}$	ACI 318-14, CI 22.5.5
	Shear in Heel (ACI 318-14, Cl 22.5)	
Factored Base Shear Capacity	$\phi V_{n,base}=~9670~{ m plf}$	ACI 318-14, CI 22.5.5
	Shear in Toe (ACI 318-14, Cl 22.5)	
Resistance Factor in Shear (Toe)	$\phi_{v,toe}=~0.75$	ACI 318-14 Table 21.2.1
Factored Toe Shear Capacity	$\phi V_{n,toe}=~9670~{ m plf}$	ACI 318-14, Cl 22.5.5
	Comments	

Supplementary Calculations for the following:

- ~ Hold-down anchor design/calculations
- ~ Hand-rail calculations (wood/concrete)
- ~ Balloon framed stud design
- ~ Ledger Calculations/Data

Hold-down anchor design calculations

SIMPSON

Strong-1

Anchor Designer™ Software Version 2.5.6582.0

JUCI	Engineer:	MRT
	Project:	Hold-down Anchors
	Address:	
	Phone:	

Company:

E-mail:

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

 $\begin{array}{l} \mbox{Anchor type: Cast-in-place} \\ \mbox{Material: AB_H} \\ \mbox{Diameter (inch): 0.625} \\ \mbox{Effective Embedment depth, h_{ef} (inch): 4.000} \\ \mbox{Anchor category: -} \\ \mbox{Anchor ductility: Yes} \\ \mbox{h_{min}$ (inch): 6.13} \\ \mbox{Cmin (inch): 1.38} \\ \mbox{S_{min}$ (inch): 2.50} \end{array}$

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

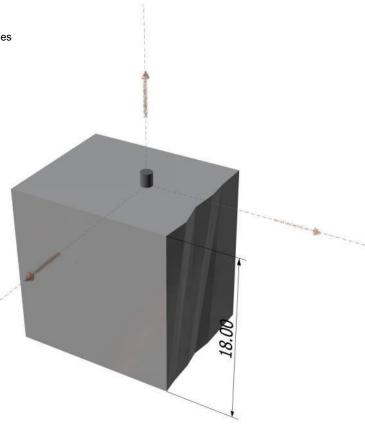
<Figure 1>

Project description: Location: Fastening description:

5/8" DIA Anchor

Date:

Page:


5/3/2018

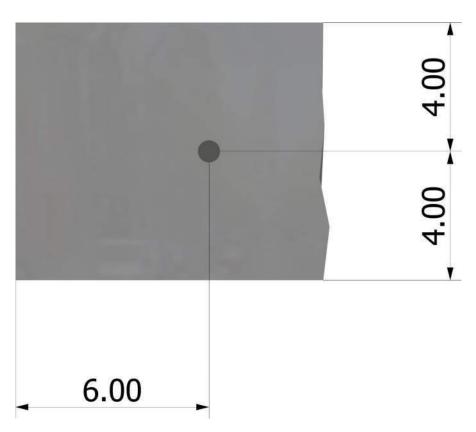
1/4

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f_c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No

L120 Engineering & Design

SEE ID


Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	2/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB5H (5/8"Ø)

SON Anchor Designer™	Company:	L120 Engineering & Design	Date:	5/3/2018
	Engineer:	MRT	Page:	3/4
g-Tie Software	Project:	Hold-down Anchors		
Version 2.5.6582.0	Address:			
•	Phone:			
	E-mail:			

3. Resulting Anchor Forces

1010

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2925.0	0.0	0.0	0.0
Sum	2925.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 2925

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
27120	0.75	20340

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

Kc	λa	f'c (psi)	h _{ef} (in)	N _b (lb)				
24.0	1.00	2500	4.000	9600				
$0.75\phi N_{cb} =$	0.75 <i>ф</i> (А _{Nc} / А _{Nco}) $\Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N$	l _b (Sec. 17.3.1	& Eq. 17.4.2.1a)			
A_{Nc} (in ²)	A_{Nco} (in ²	c _{a,min} (in)	$\Psi_{ed,N}$	Ψc,N	$\Psi_{cp,N}$	N _b (lb)	ϕ	0.75 <i>¢Ncb</i> (lb)
ANC (III-)								

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$\Psi_{c,P}$	Abrg (in ²)	f'c (psi)	ϕ	0.75 <i>¢Npn</i> (lb)
1.0	2.10	2500	0.70	22029

Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design Date: 5/3/2018				
Engineer:	MRT Page: 4/4				
Project:	Hold-down Anchors				
Address:					
Phone:					
E-mail:					

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2925	20340	0.14	Pass
Concrete breakout	2925	3476	0.84	Pass (Governs)
Pullout	2925	22029	0.13	Pass

PAB5H (5/8"Ø) with hef = 4.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, Nua (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio		
Steel	2925	32544	9.0 %		
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio		
Concrete breakout	2925	6180	47.3 %	Governs	
Pullout	2925	41960	7.0 %		

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

SIMPSON

Strong-1

Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

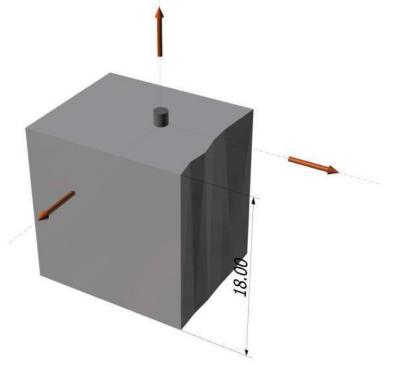
General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 0.750 Effective Embedment depth, h_{ef} (inch): 12.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 14.25 C_{min} (inch): 1.63 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0ESeismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

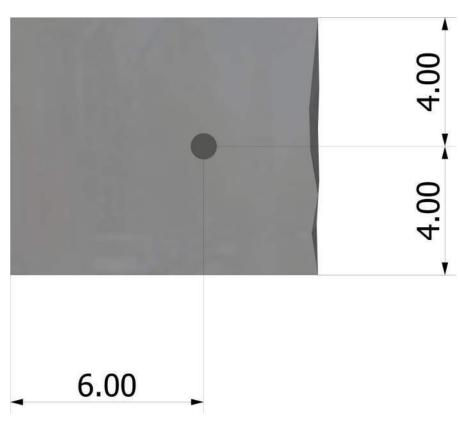

<Figure 1>

Project description: Location: Fastening description:

3/4" DIA Anchor

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f^{*}_c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No


Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB6 (3/4"Ø)

PSON	Anchor Designer™	Company:	L120 Engineering & Design	Date:	1/14/2018
		Engineer:	MRT	Page:	3/4
ng-Tie	gTie Software Version 2.5.6582.0	Project:	Hold-down Anchors		
R		Address:			
		Phone:			
		E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	13050.0	0.0	0.0	0.0
Sum	13050.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
19370	0.75	14528

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$\Psi_{c,P}$	A _{brg} (in ²)	f'c (psi)	ϕ	0.75 <i>øNpn</i> (lb)
1.0	3.53	2500	0.70	37107

SIMPSON Strong-Tie Version 2.5.6582.0

Company:	L120 Engineering & Design Date: 1/14/201				
Engineer:	MRT Page: 4/4				
Project:	Hold-down Anchors				
Address:					
Phone:					
E-mail:					

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{(1+c_{a2}/c_{a1})/4\}(160c_{a1}\sqrt{A_{brg}})\lambda\sqrt{f_c}$ (Sec. 17.3.1 & Eq. 17.4.4.1)

<i>c</i> a1 (in)	<i>c</i> _{a2} (in)	A _{brg} (in ²)	λa	f′c (psi)	ϕ	$0.75\phi N_{sbg}$ (lb)
4.00	6.00	3.53	1.00	2500	0.75	21149

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	13050	14528	0.90	Pass (Governs)
Pullout	13050	37107	0.35	Pass
Side-face blowout	13050	21149	0.62	Pass

PAB6 (3/4"Ø) with hef = 12.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, Nua (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio		
Steel	13050	23244	56.1%	Governs	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio		
Pullout	13050	70680	18.5%		

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) satisfied since steel ratio governs and the steel element is ductile.

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

SIMPSON

Strong-1

Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

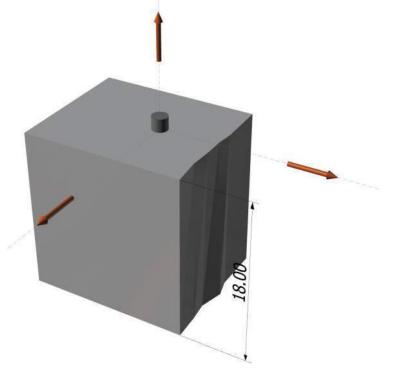
General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB H Diameter (inch): 0.875 Effective Embedment depth, hef (inch): 12.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 14.38 Cmin (inch): 1.75 Smin (inch): 3.50

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes


<Figure 1>

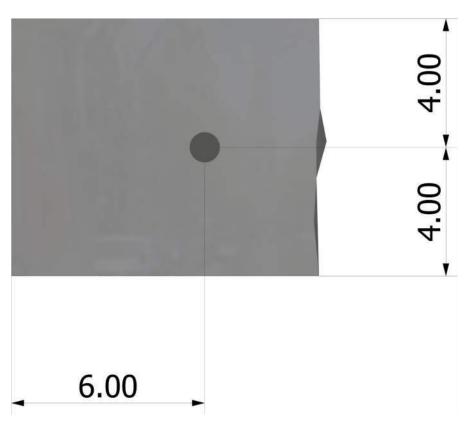
Project description: Location: Fastening description:

7/8" DIA Anchor

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f'c (psi): 2500 Ψ_{c,V}: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No

8000 1


Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB7H (7/8"Ø)

PSON	Anchor Docignor TM	Company:	L120 Engineering & Design	Date:	1/14/2018
	Anchor Designer™ Software	Engineer:	MRT	Page:	3/5
ng-Tie		Project:	Hold-down Anchors		
Version 2.5.6582.0	Address:				
•		Phone:			
		E-mail:			

3. Resulting Anchor Forces

31

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	18000.0	0.0	0.0	0.0
Sum	18000.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in x-axis, e_{Ny} (incl.): 0.00 Eccentricity of resultant tension forces in y-axis, e_{Ny} (incl.): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (Ib)
55440	0.75	41580

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

Ψc,P	A _{brg} (in ²)	f'c (psi)	ϕ	0.75 <i>¢N_{pn}</i> (lb)
1.0	4.07	2500	0.70	42683

SIMPSONAnchor Designer™Company:
Engineer:Strong:TieSoftware
Version 2.5.6582.0Project:
Address:

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{ (1 + c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}}) \lambda \sqrt{f_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$

C a1 (in)	<i>c</i> _{a2} (in)	A_{brg} (in ²)	λa	f'₀ (psi)	ϕ	0.75 <i>¢N_{sbg}</i> (lb)
4.00	6.00	4.07	1.00	2500	0.75	22682

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	18000	41580	0.43	Pass
Pullout	18000	42683	0.42	Pass
Side-face blowout	18000	22682	0.79	Pass (Governs)

PAB7H (7/8"Ø) with hef = 12.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	18000	66528	27.1%	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio	
Pullout	18000	81300	22.1%	
Side-face blowout	18000	40324	44.6%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

SIMPSON

Strong-1

Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

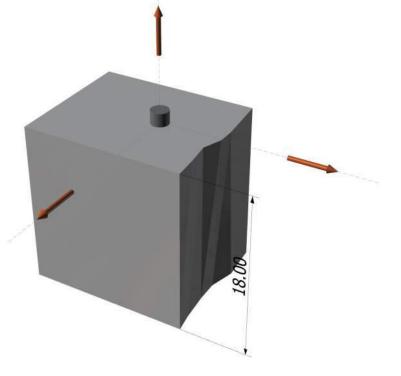
General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB_H Diameter (inch): 1.000 Effective Embedment depth, h_{ef} (inch): 15.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 17.63 C_{min} (inch): 1.88 S_{min} (inch): 4.00

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0ESeismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes


<Figure 1>

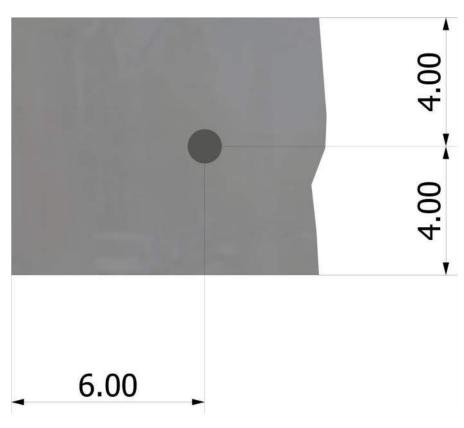
Project description: Location: Fastening description:

1" DIA Anchor

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f^c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No

2000 lb


Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB8H (1"Ø)

PSON	Anchor Designer™	Company:	L120 Engineering & Design	Date:	1/14/2018
		Engineer:	MRT	Page:	3/5
IgTie Software		Project:	Hold-down Anchors		
Version 2.5.6582.0	Address:				
•		Phone:			
		E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	22500.0	0.0	0.0	0.0
Sum	22500.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
72720	0.75	54540

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$\Psi_{c,P}$	A _{brg} (in ²)	f' _c (psi)	ϕ	0.75 <i>¢N_{pn}</i> (lb)
1.0	5.15	2500	0.70	54117

SIMPSONAnchor Designer™C.Strong-TieSoftwarePrVersion 2.5.6582.0Ad

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{(1+c_{a2}/c_{a1})/4\}(160c_{a1}\sqrt{A_{brg}})\lambda\sqrt{f'_c}$ (Sec. 17.3.1 & Eq. 17.4.4.1)

<i>c</i> a1 (in)	C a2 (in)	A _{brg} (in ²)	λa	f'₀ (psi)	ϕ	0.75 <i>¢N_{sbg}</i> (lb)
4.00	6.00	5.15	1.00	2500	0.75	25540

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	22500	54540	0.41	Pass
Pullout	22500	54117	0.42	Pass
Side-face blowout	22500	25540	0.88	Pass (Governs)

PAB8H (1"Ø) with hef = 15.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, Nua (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	22500	87264	25.8%	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio	
Pullout	22500	103080	21.8%	
Side-face blowout	22500	45405	49.6%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

Strong-I

Anchor Designer™ Software Ve

151011 2.3.0302.0	rsion	2.5.6582.0	
-------------------	-------	------------	--

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

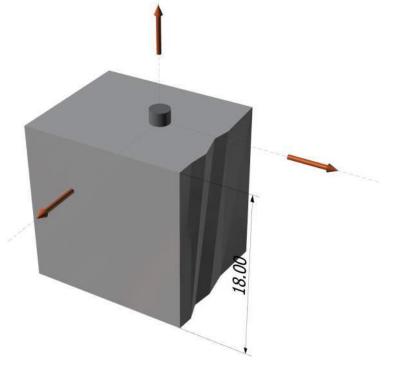
General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 1.125 Effective Embedment depth, hef (inch): 15.000 Anchor category: -Anchor ductility: Yes hmin (inch): 17.75 Cmin (inch): 2.13 Smin (inch): 4.50

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

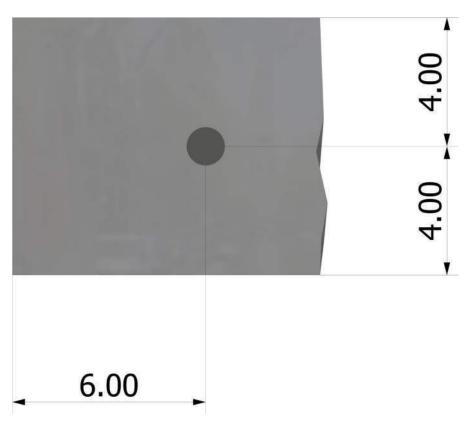

<Figure 1>

Project description: Location: Fastening description:

1 1/8" DIA Anchor

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f'c (psi): 2500 Ψ_{c,V}: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No


Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB9 (1 1/8"Ø)

PSON	Anchor Docignor™	Company:	L120 Engineering & Design	Date:	1/14/2018
	Anchor Designer™ Software Version 2.5.6582.0	Engineer:	MRT	Page:	3/5
ng-Tie		Project:	Hold-down Anchors		
		Address:			
•		Phone:			
		E-mail:			

3. Resulting Anchor Forces

31

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	27900.0	0.0	0.0	0.0
Sum	27900.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e_{Ny} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
44255	0.75	33191

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

Ψ _{c,P}	A _{brg} (in ²)	f' _c (psi)	ϕ	0.75 <i>¢N_{pn}</i> (lb)
1.0	6.37	2500	0.70	66885

PSON Anchor Designer™	Company:	L120 Engineering & Design
	Engineer:	MRT
ng-Tie Software	Project:	Hold-down Anchors
Version 2.5.6582.0	Address:	
~	Phone:	

E-mail:

Date:

Page:

1/14/2018

4/5

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{(1+c_{a2}/c_{a1})/4\}(160c_{a1}\sqrt{A_{brg}})\lambda\sqrt{f'_c}$ (Sec. 17.3.1 & Eq. 17.4.4.1)

<i>c</i> a1 (in)	C a2 (in)	A _{brg} (in ²)	λa	f′c (psi)	ϕ	0.75 <i>¢N_{sbg}</i> (lb)
4.00	6.00	6.37	1.00	2500	0.75	28394

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	27900	33191	0.84	Pass
Pullout	27900	66885	0.42	Pass
Side-face blowout	27900	28394	0.98	Pass (Governs)

PAB9 (1 1/8"Ø) with hef = 15.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	27900	53106	52.5%	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio	
Pullout	27900	127400	21.9%	
Side-face blowout	27900	50478	55.3%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

SIMPSON

Strong-1

Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

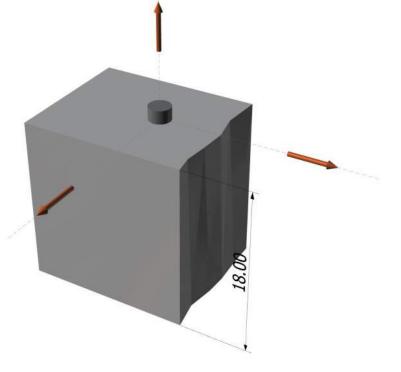
General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 1.250 Effective Embedment depth, hef (inch): 15.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 18.00 Cmin (inch): 2.25 Smin (inch): 5.00

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes


<Figure 1>

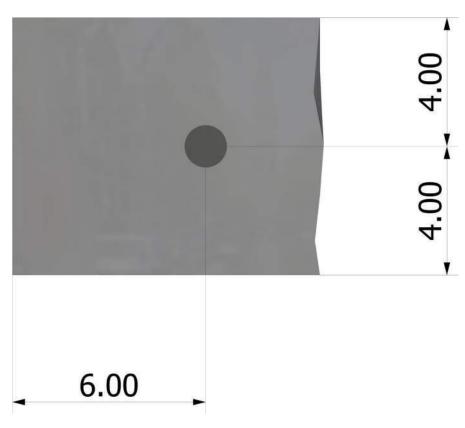
Project description: Location: Fastening description:

1 1/4" DIA Anchor

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f'c (psi): 2500 Ψ_{c,V}: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No

10001


Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB10 (1 1/4"Ø)

PSON	Anchor Docignor™	Company:	L120 Engineering & Design	Date:	1/14/2018
Con	Anchor Designer™ Software Version 2.5.6582.0	Engineer:	MRT	Page:	3/5
ng-Tie		Project:	Hold-down Anchors		
		Address:			
0		Phone:			
		E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	31500.0	0.0	0.0	0.0
Sum	31500.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
56200	0.75	42150

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

Ψc,P	A _{brg} (in ²)	f'c (psi)	ϕ	0.75 <i>¢N_{pn}</i> (lb)
1.0	8.39	2500	0.70	88137

SIMPSON Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{(1+c_{a2}/c_{a1})/4\}(160c_{a1}\sqrt{A_{brg}})\lambda\sqrt{f'_c}$ (Sec. 17.3.1 & Eq. 17.4.4.1)

<i>c</i> a1 (in)	<i>c</i> _{a2} (in)	A_{brg} (in ²)	λa	f′c (psi)	ϕ	0.75 <i>¢N_{sbg}</i> (lb)
4.00	6.00	8.39	1.00	2500	0.75	32594

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	31500	42150	0.75	Pass
Pullout	31500	88137	0.36	Pass
Side-face blowout	31500	32594	0.97	Pass (Governs)

PAB10 (1 1/4"Ø) with hef = 15.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (Ib)	1.2 x Nominal Strength, Nn (lb)	Ratio		
Steel	31500	67440	46.7%		
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio		
Pullout	31500	167880	18.8%		
Side-face blowout	31500	57945	54.4%	Governs	

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

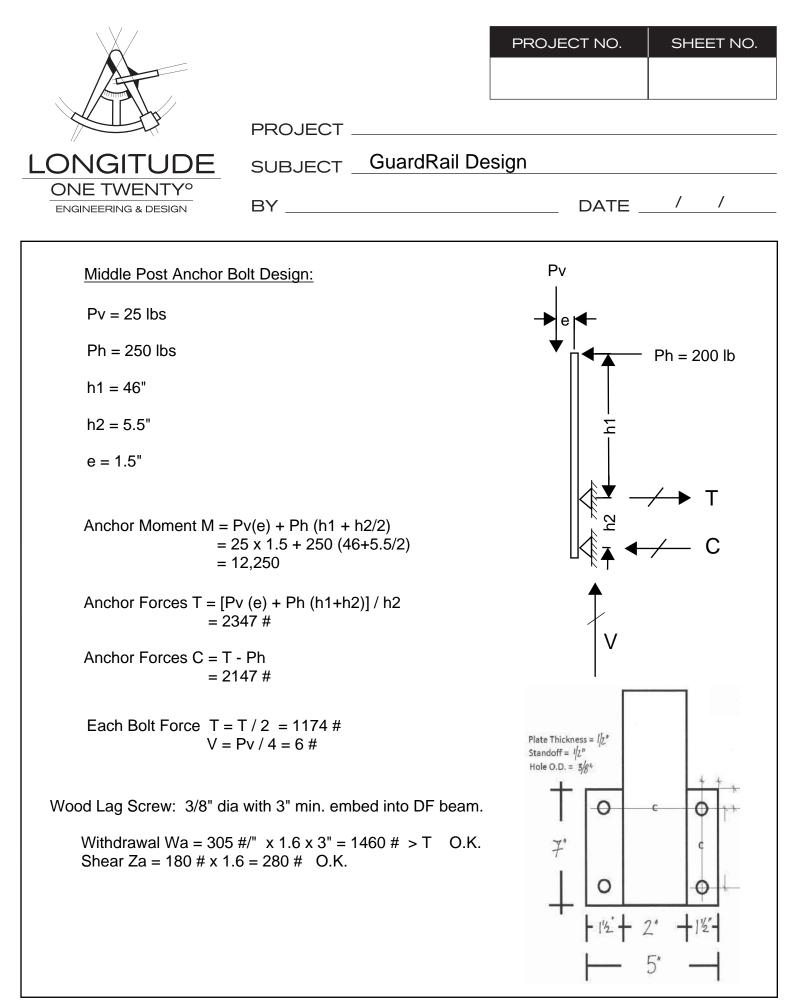
Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

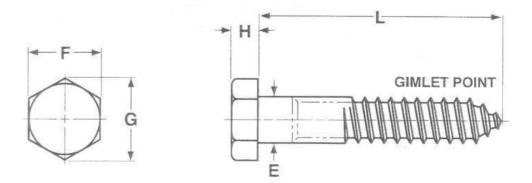
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.


- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

Hand-rail Calculations



LONGITUDE	PROJECT SUBJECTGuardRai	
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _/ /
Mounting Plate Design: Apply Forces: $Mx = 9788$ $My = 900 \pi$ T = 200 # V = 25 #	; #" #"	Plate Thickness = $1/2$. Standoff = $1/2$. Hole O.D. = $3/g^{*}$ \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
= fby	= Mx/2/Sx = 9788/2/(1/4 x 5" x (1/2)^2) = 15,660 psi = My/Sy = 900/(1/4 x 7" x (1/2)^2) = 2,057 psi	$\begin{array}{c c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \hline \end{array} & 5' & \longrightarrow 2'' & - \\ \hline \hline \end{array} & 7'' & - \end{array}$
For Plate 6061-T6 Fb =3 = 2	5 ksi / 1.65 21,200 psi > fb O.K.	
Plate Combined Stress fbx/Fb + fby/Fb = 0.83 <	1.0 O.K.	

Page 1 of 1	Fastenal Product Standard	REV-00
Date: January 11, 2012	FASTENAL	LAG.HDG

Hex Lag Screws, Hot Dipped Galvanized The information below lists the required dimensional, chemical and physical characteristics of the products in this purchase order. If the order received does not meet these requirements, it may result in a supplier corrective action request, which could jeopardize your status as an approved vendor. Unless otherwise specified, all referenced consensus standards must be adhered to in their entirety.

	E	Ξ	F		G		Н	
Diameter	Body D	ody Diameter Width Across Flats		Width Across Corners		Height		
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
10	.199	.178	.281	.271	.323	.309	.140	.110
1/4	.260	.237	.438	.425	.505	.484	.188	.150
5/16	.324	.298	.500	.484	.577	.552	.235	.195
3/8	.388	.360	.562	.544	.650	.620	.268	.226
7/16	.452	.421	.625	.603	.722	.687	.316	.272
1/2	.515	.482	.750	.725	.866	.826	.364	.302
5/8	.642	.605	.938	.906	1.083	1.033	.444	.378
3/4	.768	.729	1.125	1.088	1.299	1.240	.524	.455
7/8	.895	.852	1.312	1.269	1.516	1.447	.604	.531
1	1.022	.976	1.500	1.450	1.732	1.653	.700	.591
1 1/8	1.149	1.098	1.688	1.631	1.949	1.859	.780	.658
1 1/4	1.277	1.223	1.875	1.812	2.165	2.066	.876	.749

Dimensions above are prior to coating

Specification Requirements:

Dimensions:	ASME B18.2.1.
Material:	Per ASTM A307, Grade A
Thread requirements:	The minimum thread length must be equal to one half the nominal Screw length plus $\frac{1}{2}$, or 6 inch, whichever is shorter. Screws too
	short to conform to this formula must be threaded as close to the head as possible.
Coating:	Hot Dip Zinc per ASTM F2329 or in accordance with Class C of ASTM A153 and Class D for 3/8" diameter and less.
	Material: Thread requirements:

		PROJECT NO.	SHEET NO.
	PROJECT _		
LONGITUDE	SUBJECT _		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /

Table 2.3.2	Frequen Factors,	tly Used Load Duration C_{D^1}
Load Duration	Cp	Typical Design Loads
Permanent	0.9	Dead Load

Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

1. Load duration factors shall not apply to reference modulus of elasticity, E, reference modulus of elasticity for beam and column stability, $E_{\rm man}$, no to reference compression perpendicular to grain design values, F_{\perp} , based on a deformation limit.

 Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with water-borne preservatives (see Reference 30), or fire retardant chemicals. The impact load duration factor shall not apply to connections.

2.3.3 Temperature Factor, Ct

Reference design values shall be multiplied by the temperature factors, C_t , in Table 2.3.3 for structural members that will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C).

2.3.4 Fire Retardant Treatment

The effects of fire retardant chemical treatment on strength shall be accounted for in the design. Adjusted design values, including adjusted connection design values, for lumber and structural glued laminated timber pressure-treated with fire retardant chemicals shall be obtained from the company providing the treatment and redrying service. Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with fire retardant chemicals (see Table 2.3.2).

2.3.5 Format Conversion Factor, K_F (LRFD Only)

For LRFD, reference design values shall be multiplied by the format conversion factor, K_F , specified in Table 2.3.5. The format conversion factor, K_F , shall not apply for designs in accordance with ASD methods specified herein.

2.3.6 Resistance Factor, ϕ (LRFD Only)

For LRFD, reference design values shall be multiplied by the resistance factor, ϕ , specified in Table 2.3.6. The resistance factor, ϕ , shall not apply for designs in accordance with ASD methods specified herein.

2.3.7 Time Effect Factor, λ (LRFD Only)

For LRFD, reference design values shall be multiplied by the time effect factor, λ , specified in Appendix N.3.3. The time effect factor, λ , shall not apply for designs in accordance with ASD methods specified herein.

Table 2.3.3	Temperature Fac	ctor, Ct		
Reference Design Values	In-Service Moisture -		Ct	
values	Conditions ¹	T≤100°F	100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>
Ft, E, Emin	Wet or Dry	1.0	0.9	0.9
	Dry	1.0	0.8	0.7
F_b , F_v , F_c , and $F_{c\perp}$	Wet	1.0	0.7	0.5

 Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively. 2

DESIGN VALUES FOR STRUCTURAL MEMBERS

	PROJECT NO.	SHEET NO.
PROJECT		
SUBJECT		
BY	DATE _	/ /
	SUBJECT	PROJECT

		ASD Only Trond Duration Factor	ASD and LRFD						LRFD Only					
			Wet Service Factor	Temperature Factor	Group Action Factor	Geometry Factor ³	Penetration Depth Factor ³	End Grain Factor ³	Metal Side Plate Factor ³	Diaphragm Factor ³	Toe-Nail Factor 3	Y Format Conversion Factor	 Resistance Factor 	Time Effect Factor
6		12: S	Lat	eral I	oads	16 3	87 3	29 29	c 9	S. 55	É		80 - 30	2
Dowel-type Fasteners (e.g. bolts, lag screws, wood screws, nails, spikes, drift bolts, & drift pins)	$\vec{Z} = Z x$	CD	C _M	\mathbf{C}_{t}	Cg	\mathbf{C}_{Δ}	÷	C _{eg}	1/101	\mathbf{C}_{di}	C _{tn}	3.32	0.65	λ
Split Ring and Shear Plate	$\mathbf{P} = \mathbf{P} \mathbf{x}$	CD	CM	C_t	C_{g}	C_{Δ}	Cd	122	Cst	12	1989	3.32	0.65	λ
Connectors	Q' = Q x	CD	CM	Ct	Cg	C_{Δ}	C_d		-	1	8	3.32	0.65	λ
Timber Rivets	$\mathbf{P} = \mathbf{P} \mathbf{x}$	CD	См	Ct	3 .	1.5	7 0	1	C _{st} ⁴		()	3.32	0.65	λ
Timber Kivets	Q = Q x	CD	CM	Ct	1993	C_{Δ}^{5}	1 02		C _{st} ⁴	× .	1993	3.32	0.65	λ
Spike Grids	Z = Z x	CD	См	Ct	657.9	\mathbf{C}_{Δ}	55	145	13.53	17	857.9	3.32	0.65	λ
			With	irawa	l Loa	ds								
Nails, spikes, lag screws, wood screws, & drift pins	W' = W x	CD	C_M^2	Ct	390		÷	C_{eg}	190	ж	Ctn	3.32	0.65	λ

1. The load duration factor, C_D, shall not exceed 1.6 for connections (see 11.3.2).

2. The wet service factor, C_M, shall not apply to toe-nails loaded in withdrawal (see 12.5.4.1).

3. Specific information concerning geometry factors Ca, penetration depth factors Ca, end grain factors, Ceg, metal side plate factors, Ca, diaphragm factors, Ca, and toe-nail factors, Cim is provided in Chapters 12, 13, and 14.

The metal side plate factor, C_a, is only applied when rivet capacity (P_n, Q_r) controls (see Chapter 14).
 The geometry factor, C_a, is only applied when wood capacity, Q_w, controls (see Chapter 14).

11.3.2 Load Duration Factor, Cp (ASD Only)

Reference design values shall be multiplied by the load duration factors, $C_D \le 1.6$, specified in 2.3.2 and Appendix B, except when the capacity of the connection is controlled by metal strength or strength of concrete/masonry (see 11.2.3, 11.2.4, and Appendix B.3). The impact load duration factor shall not apply to connections.

11.3.3 Wet Service Factor, CM

Reference design values are for connections in wood seasoned to a moisture content of 19% or less and used under continuously dry conditions, as in most covered structures. For connections in wood that is unseasoned or partially seasoned, or when connections are exposed to wet service conditions in use, reference design values shall be multiplied by the wet service factors, C_{sp}, specified in Table 11.3.3.

11.3.4 Temperature Factor, Ct

Reference design values shall be multiplied by the temperature factors, C, in Table 11.3.4 for connections that will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C).

		PROJECT NO.	SHEET NO.
	PROJECT		
ONGITUDE	SUBJECT		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /

		al design v ead penetra									
Specific Gravity,					Lag Sci	ew Diam	eter, D				10
G ²	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8"	1"	1-1/8"	1-1/4'
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327
0.71	381	450	516	579	640	757	868	974	1077	1176	1273
0.68	357	422	484	543	600	709	813	913	1009	1103	1193
0.67	349	413	473	531	587	694	796	893	987	1078	1167
0.58	281	332	381	428	473	559	641	719	795	869	940
0.55	260	307	352	395	437	516	592	664	734	802	868
0.51	232	274	314	353	390	461	528	593	656	716	775
0.50	225	266	305	342	378	447	513	576	636	695	752
0.49	218	258	red	332	367	434	498	559	617	674	730
0.47	205	242	278	312	345	408	467	525	580	634	686
0.46	199	235	269	302	334	395	453	508	562	613	664
0.44	186	220	252	283	312	369	423	475	525	574	621
0.43	179	212	243	273	302	357	409	459	508	554	600
0.42	173	205	235	264	291	344	395	443	490	535	579
0.41	167	198	226	254	281	332	381	428	473	516	559
0.40	161	190	218	245	271	320	367	412	455	497	538
0.39	155	183	210	236	261	308	353	397	438	479	518
0.38	149	176	202	227	251	296	340	381	422	461	498
0.37	143	169	194	218	241	285	326	367	405	443	479
0.36	137	163	186	209	231	273	313	352	389	425	460
0.35	132	156	179	200	222	262	300	337	373	407	441
0.31	110	130	149	167	185	218	250	281	311	339	367

Tabulated withdrawal design values, W, for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Specific gravity, G, shall be determined in accordance with Table 12.3.3A.

12.2.3.2 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of fastener penetration from 12.2.3.1 shall be multiplied by the length of fastener penetration, p_{t_s} into the wood member.

12.2.3.3 The reference withdrawal design value, in lbs/in. of penetration, for a single post-frame ring shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities and nail diameters given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'.

W = 1800 G² D (12.2-4)

12.2.3.4 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of ring shank penetration from 12.2.3.3 shall be multiplied by the length of ring shank penetration, p_b into the wood member. 12.2.3.5 Nails and spikes shall not be loaded in

withdrawal from end grain of wood (C_{eg} =0.0). 12.2.3.6 Nails, and spikes shall not be loaded in

withdrawal from end-grain of laminations in crosslaminated timber (C_{eg} =0.0).

12.2.4 Drift Bolts and Drift Pins

Reference withdrawal design values, W, for connections using drift bolt and drift pin connections shall be determined in accordance with 11.1.1.3. 12

		PROJECT NO.	SHEET NO.
	PROJECT _		
LONGITUDE	SUBJECT _		
ONE TWENTY ^O ENGINEERING & DESIGN	BY	 DATE _	/ /

Table 12.3.3A Assigned Specific Gravities

Species Combination	Specific ¹ Gravity, G	Species Combinations of MSR and MEL Lumber	Specific ¹ Gravity, G
Alaska Cedar	0.47	Douglas Fir-Larch	
Alaska Hemlock	0.46	E=1,900,000 psi and lower grades of MSR	0.50
Alaska Spruce	0.41	E=2,000,000 psi grades of MSR	0.51
Alaska Yellow Cedar	0.46	E=2,100,000 psi grades of MSR	0.52
Aspen	0.39	E=2,200,000 psi grades of MSR	0.53
Balsam Fir	0.36	E=2,300,000 psi grades of MSR	0.54
Beech-Birch-Hickory	0.71	E=2,400,000 psi grades of MSR	0.55
Coast Sitka Spruce	0.39	Douglas Fir-Larch (North)	
Cottonwood	0.41	E=1,900,000 psi and lower grades of MSR and MEL	0.49
Douglas Fir-Larch	0.50	E=2,000,000 psi to 2,200,000 psi grades of MSR and MEL	0.53
Douglas Fir-Larch (North)	0.49	E=2,300,000 psi and higher grades of MSR and MEL	0.57
Douglas Fir-South	0.46	Douglas Fir-Larch (South)	
Eastern Hemlock	0.41	E=1,000,000 psi and higher grades of MSR	0.46
Eastem Hemlock-Balsam Fir	0.36	Engelmann Spruce-Lodgepole Pine	
Eastern Hemlock-Tamarack	0.41	E=1,400,000 psi and lower grades of MSR	0.38
Eastern Hemlock-Tamarack (North)	0.47	E=1,500,000 psi and higher grades of MSR	0.46
Eastern Softwoods	0.36	Hem-Fir	
Eastern Spruce	0.41	E=1,500,000 psi and lower grades of MSR	0.43
Eastern White Pine	0.36	E=1,600,000 psi grades of MSR	0.44
Engelmann Spruce-Lodgepole Pine	0.38	E=1,700,000 psi grades of MSR	0.45
Hem-Fir	0.43	E=1,800,000 psi grades of MSR	0.46
Hem-Fir (North)	0.46	E=1,900,000 psi grades of MSR	0.47
Mixed Maple	0.55	E=2,000,000 psi grades of MSR	0.48
Mixed Oak	0.68	E=2,100,000 psi grades of MSR	0.49
Mixed Southern Pine	0.51	E=2,200,000 psi grades of MSR	0.50
Mountain Hemlock	0.47	E=2,300,000 psi grades of MSR	0.51
Northern Pine	0.42	E=2,400,000 psi grades of MSR	0.52
Northern Red Oak	0.68	Hem-Fir (North)	
Northern Species	0.35	E=1,000,000 psi and higher grades of MSR and MEL	0.46
Northern White Cedar	0.31	Southern Pine	-0667.0
Ponderosa Pine	0.43	E=1,700,000 psi and lower grades of MSR and MEL	0.55
Red Maple	0.58	E=1,800,000 psi and higher grades of MSR and MEL	0.57
Red Oak	0.67	Spruce-Pine-Fir	
Red Pine	0.44	E=1,700,000 psi and lower grades of MSR and MEL	0.42
Redwood, close grain	0.44	E=1,800,000 psi and 1,900,000 grades of MSR and MEL	0.46
Redwood, open grain	0.37	E=2,000,000 psi and higher grades of MSR and MEL	0.50
Sitka Spruce	0.43	Spruce-Pine-Fir (South)	
Southern Pine	0.55	E=1,100,000 psi and lower grades of MSR	0.36
Sprace-Pine-Fir	0.42	E=1,200,000 psi to1,900,000 psi grades of MSR	0.42
Spruce-Pine-Fir (South)	0.36	E=2,000,000 psi and higher grades of MSR	0.50
Western Cedars	0.36	Western Cedars	and some the
Western Cedars (North)	0.35	E=1,000,000 psi and higher grades of MSR	0.36
Western Hemlock	0.47	Western Woods	
Western Hemlock (North)	0.46	E=1,000,000 psi and higher grades of MSR	0.36
Western White Pine	0.40	The standard has been added by any standard	And some that
Western Woods	0.36		
White Oak	0.73		
Yellow Poplar	0.43		

1. Specific gravity, G, based on weight and volume when oven-dry. Different specific gravities, G, are possible for different grades of MSR and MEL lumber (see Table 4C, Footnote 2).

		PROJECT NO.	SHEET NO.
	PROJECT		
ONE TWENTY ^O ENGINEERING & DESIGN	BY		/ /

(two member) Connections1,2,3,4 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for ts<1/4") or

ASTM A 36 steel side plate (for t_s=1/4")

Table 12K

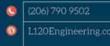
(tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D)

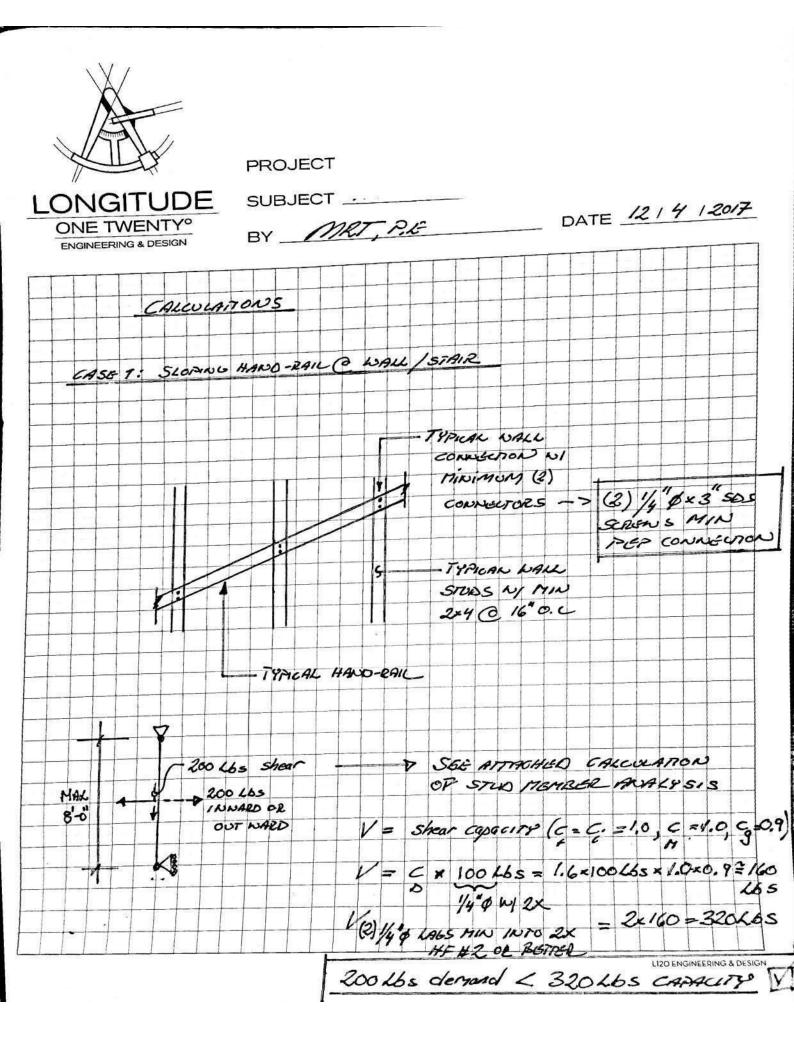
LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear

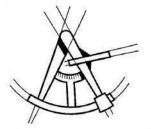
G SC	Side Member Thickness	Lag Screw Diameter	G=0.67	Red Oak	G=0.55 Mir of Manlo	Southern Pine	G=0.5	Douglas Fir-Larch	G=0.49 Douates Fir-Larch	(N)	G=0.46 Douglas Fin(S)	Hem-Fir(N)	G=0.43	Hem-Fir	G=0.42	Spruce-Pine-Fir	G=0.37 Redwood	(open grain)	G=0.36 Eastern Softwoods Sonure-Pine-Fin(S)	Western Voods	G=0.35	Northern Species
	t,	D	Z	Z,	Z,	Z,	Z,	Z,	Z	Z,	Z	Z,	Z	Z,	Z	Z,	Z	Z,	Z,	Z,	Z,	Z_
	in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	lbs.	Ibs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	Ibs.	lbs.	bs.	Ibs.	Ibs.	lbs.	lbs.	1bs. 90
	0.075	1/4	170	130	160	120	150	110	150	110	150	100	140	100	140	100	130	90	130	90	130	
	(14 gage)	5/16	220	160	200	140	190	130	190	130	190	130	180	120	180	120	170	110	170	110	160	100
	0.405	3/8	220	160	200	140	200	130	190	130	190	120	180	120	180	120	170	110	170	100	170	100
	0.105	1/4	180	140	170	130	160	120	160	120	160	110	150	110	150	110	140	100	140	100	140	90
	(12 gage)	5/16	230	170	210	150	200	140	200	140	190	130	190	130	190	120	180	110	170	110	170	110
	0.120	3/8	230	160 150	210	140	200	140	200	130	200	130 120	190	120	190	120	180 150	110	180	110	170	110
			190		180	130		120		120	160		160		160			100	150	100		
	(11 gage)	5/16	230	170	210	150	210	140	200	140	200	140	190	130	190	130	180	120	180	120	180	110
	0.404	3/8	240	170	220	150	210	140	210	140	200	130 120	200	130	190	120	180	110	180	110	180	110
	0.134	1/4	200	150	180	140	180	130	170	130	170		160	120	160	110	150	110	150	100	150	
	(10 gage)	5/16 3/8	240 240	180	220 220	160	210 220	150	210	140	200	140	200	130	200	130	190	120	180	120	180	120
	0.179	3/6		170	210	150 150		140	210	140	210	140	200	130 130	200	130	190 180	120	190	120 120	180 170	110
			220				200	150	200	140	190				190	130		120	170			
	(7 gage)	5/16	260	190	240	170	230	160	230	160	230	150	220	150	220	150	210	130	200	130	200	130
	0.000	3/8	270	190	250	170	240	160	240	160	230	150	220	140	220	140	210	130	210	130	200	130
	0.239	1/4	240	180	220	160	210	150	210	150	200	140	190	140	190	130	180	120	180	120	180	120
	(3 gage)	5/16	300	220 220	280	190	270	180	260	180	260	170	250	160	250	160	230	150	230	150	230	140 140
		3/8	310		280	190	270	180	270	180	260	170	250	160	250	160	240	140	230	140	230	
	I	7/16	420	290	390	260	380	240	370	240	360	230	350	220	350	220	330	200	330	200	320	190
	I	1/2	510	340	470	300	460	290	450	280	440	270	430	260	420	260	400	240	400	230	390	230
		5/8	770	490	710	430	680	400	680	400	660	380	640	370	630	360	600	330	590	330	580	320
	I	3/4	1110	670	1020	590	980	560	970	550	950	530	920	500	910	500	860	450	850	450	840	440
	I	7/8	1510	880	1390	780	1330	730	1320	710	1280	690	1250	650	1230	650	1170	590	1160	590	1140	570
	1/4	1	1940	1100	1780	960 160	1710	910 150	1700	890	1650	860 140	1600	820	1590	810	1500	740	1480	730 120	1460	710
	1/4	1/4	240		220		210	180	210	150	200		200	140	190	130	180	120	180		180	
		5/16	310	220	280	200	270		270	180	260	170	250	170	250	160	230	150	230	150	230	140
		3/8	320	220	290	190	280	180	270	180	270	170	260	160	250	160	240	150	240	140	230	140
	· ·	7/16	480 580	320	440	280	420	\sim \sim	420	260	410	250 310	390	240	390	230	370	220	360	210	360	210
		1/2 5/8		390	540	340	520	320	510 740	320	500		480	290	480	290	460	270	450	260	440	260 350
		3/4	850 1200	530 730	780	470	750 1060	440 600	1050	440	720 1020	420 570	700 990	400	690	400 530	660 930	370 490	650	360 480	640 900	470
				730		640				590				540	980				920			
		7/8	1600 2040	930 1150	1470	820 1000	1410	770 950	1400	750 930	1360	720 900	1320 1680	690 850	1310 1660	680 840	1240	630 770	1220	620 760	1200 1530	600 740
		1	2040	1100	1870	1000	1800	900	1780	830	1730	900	1000	000	1000	040	1570	110	1550	700	1030	740

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

Tabulated lateral design values, Z, shall be intripried by an appreciate adjustment factors (see Faber 17.57).
 Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 8D; dowel bearing strengths, F_e, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, F_{yin} of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D ≥3/8".
 Where the lag screw penetration, p, is less than 8D but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values.

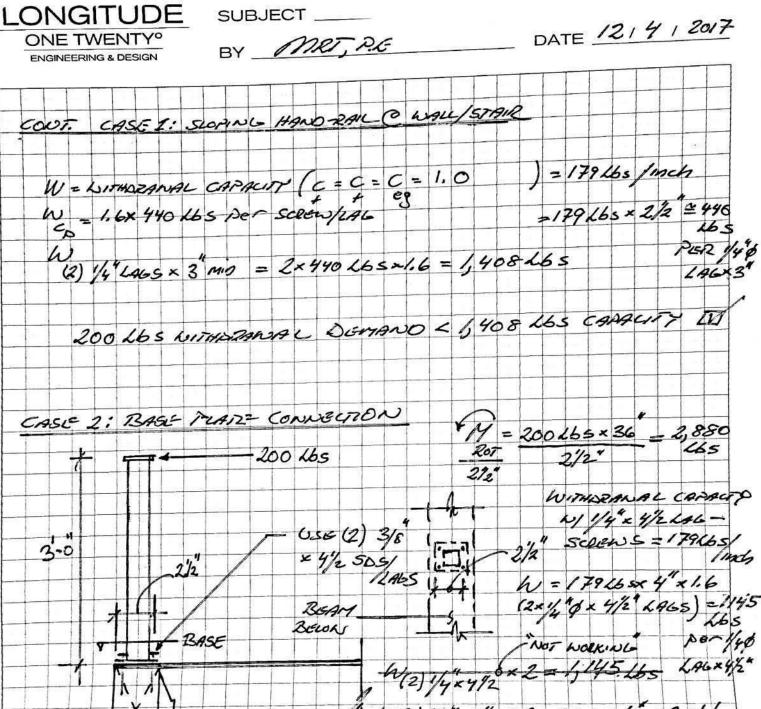

shall be calculated using the provisions of 12.3 for the reduced penetration.
4. The length of lag screw penetration, p, not including the length of the tapered tip, E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p_{min}.




To determine the minimum required hand-rail connections, with a pre-manufactured hand-rail system provided by others. Our scope is limited to assess the minimum connection requirements of the hand-rail system as listed below. Our assumptions are that the base-plates, welds and metal member properties of the pre-manufactured complete system are sufficient in strength to support the code prescribed design loads, for which our design have been provided to comply with.

We have analyzed and verified the minimum connection requirements, for the following conditions:

- Wall connection (sloping wall @ stair)
 Result: minimum (2) ¼" DIA x 3" SDS screws to a minimum of (1) support studs at each connection
- Base-plate connection (vertical post application, typical)
 Result: The base-plate column connection to have a minimum of (4) 3/8" x 4 ½ lag-screws into full width support member/beams below
- Wall connection (horizontal typical application)
 Result: (2) ¼" DIA x 3" SDS screws to a minimum of (2) support studs at each connection



PROJECT

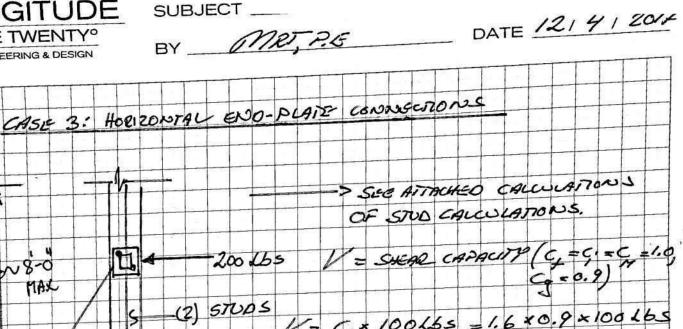
٨

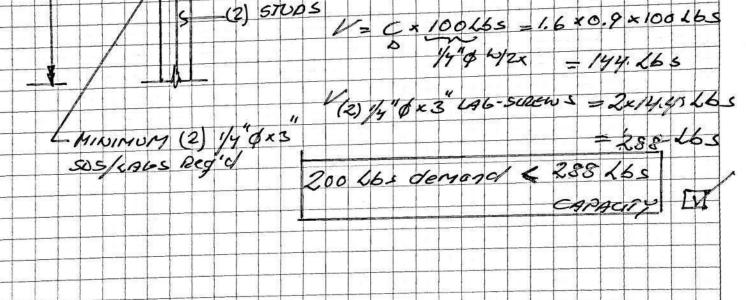
X

W(2) 3/3"x 4/2 × 2 = 243× 4". ×2 ×1.6

2,850 Lbs demand 2 3,10 CAPACITY

= 3,110. -




PROJECT

ONGITUDE ONE TWENTY° ENGINEERING & DESIGN

Jus-0

MAX

LI2O ENGINEERING & DESIGN

SIMPSON

Strong-I

Anchor Designer™ Software

Version 2.5.6582.0

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

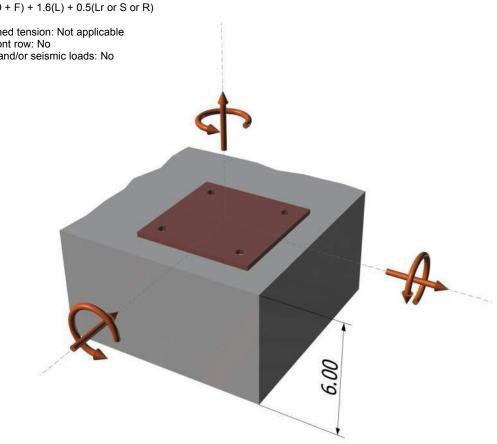
Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.375 Nominal Embedment depth (inch): 3.250 Effective Embedment depth, her (inch): 2.400 Code report: ICC-ES ESR-2713 Anchor ductility: No hmin (inch): 5.00 cac (inch): 3.63 Cmin (inch): 1.75 Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 1.2(D + F) + 1.6(L) + 0.5(Lr or S or R)Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	1/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			


Project description: Location: Fastening description:

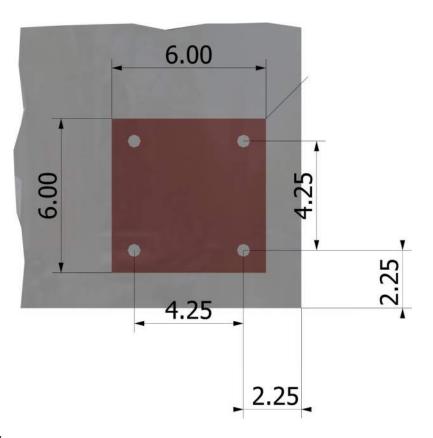
Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 6.00 State: Cracked Compressive strength, f_c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 6.00 x 6.00 x 0.25

816


Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

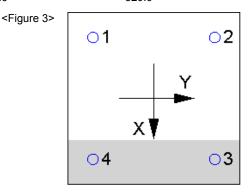
Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	2/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: Titen HD® - 3/8"Ø Titen HD, hnom:3.25" (83mm) Code Report: ICC-ES ESR-2713



N Anchor Designer™	Company:	L120 Engineering & Design	Date:	5/3/2018			
	Engineer:	MRT	Page:	3/5			
e Software	Project:	Hand-rail calculation					
Version 2.5.6582.0	Address:						
a.	Phone:						
	E-mail:						

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	1250.4	-80.0	0.0	80.0
2	1250.4	-80.0	0.0	80.0
3	0.0	-80.0	0.0	80.0
4	0.0	-80.0	0.0	80.0
Sum	2500.7	-320.0	0.0	320.0

Maximum concrete compression strain (‰): 0.12 Maximum concrete compression stress (psi): 538 Resultant tension force (lb): 2501 Resultant compression force (lb): 2501 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

Nsa (lb)	ϕ	ϕN_{sa} (lb)
10890	0.65	7079

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

Nb = kcλa√f	chef ^{1.5} (Eq. 17.4	4.2.2a)							
Kc	λa	ťc (psi)	hef (in)	Nb (lk)				
17.0	1.00	2500	2.400	3160)	_			
$\phi N_{cbg} = \phi (A$	Nc / ANco) Yec, N	$\mathcal{V}_{ed,N} \mathcal{\Psi}_{c,N} \mathcal{\Psi}_{cp,N} \mathcal{N}_{b}$	(Sec. 17.3.1 &	& Eq. 17.4.2.1	lb)				
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	Ψc,N	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕN_{cbg} (lb)
72.72	51.84	2.25	1.000	0.888	1.00	1.000	3160	0.65	2557
	-	Anchor in Tens 0) ⁿ (Sec. 17.3.4	•		ort)				
$\Psi_{c,P}$	λa	N _p (lb)	ť _c (psi)	n		ϕ	ϕN_{pn} (lb)		
1.0	1.00	2700	2500	0.50		0.65	1755	_	

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

SIMPSON Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	4/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

V _{sa} (lb)	$\phi_{ ext{grout}}$	ϕ	$\phi_{grout} \phi V_{sa}$ (lb)
4460	1.0	0.60	2676

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear parallel to edge in x-direction: $V_{by} = \min[7(I_e/d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f_c c_{a1}^{1.5}}; 9\lambda_a \sqrt{f_c c_{a1}^{1.5}}] \text{ (Eq. 17.5.2.2a \& Eq. 17.5.2.2b)}$ le (in) *d*₄ (in) Vby (lb) λa f'c (psi) Ca1 (in) 2500 2.40 0.375 1.00 2.25 1049 $\phi V_{cbgx} = \phi (2) (A_{Vc} / A_{Vco}) \Psi_{ec, V} \Psi_{ed, V} \Psi_{c, V} \Psi_{h, V} V_{by} (\text{Sec. 17.3.1, 17.5.2.1(c) \& Eq. 17.5.2.1b})$ A_{Vc} (in²) A_{Vco} (in²) $\Psi_{ec,V}$ $\Psi_{ed,V}$ $\Psi_{c,V}$ $\Psi_{h,V}$ V_{by} (lb) ϕV_{cbgx} (lb) ø 33.33 22.78 1.000 1.000 1.000 1.000 1049 0.70 2148

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

ψV _{cpg} = ψK _{cp} N _{cbg} = ψK _{cp} (A _{Nc} / A _{Nco}) Ψ _{ec,N} Ψ _{ed,N} Ψ _{c,N} Ψ _{cp,N} N _b (Sec. 17.3.1 & Eq. 17.5.3.1b)									
Kcp	A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	Ψc,N	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕV_{cpg} (lb)
1.0	102.01	51.84	1.000	0.888	1.000	1.000	3160	0.70	3863

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.6.)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1250	7079	0.18	Pass
Concrete breakout	2501	2557	0.98	Pass (Governs)
Pullout	1250	1755	0.71	Pass
Shear	Factored Load, Vua (Ib)	Design Strength, øVn (lb)	Ratio	Status
Steel	80	2676	0.03	Pass
Concrete breakout y+	160	2148	0.07	Pass
Pryout	320	3863	0.08	Pass (Governs)
Interaction check Nu	a∕φNn Vua∕φVn	Combined Rati	o Permissible	Status
Sec. 17.61 0.9	0.00	97.8 %	1.0	Pass

3/8"Ø Titen HD, hnom:3.25" (83mm) meets the selected design criteria.

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	5/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Project: Location: Single 2x4 stud (staircase) Multi-Loaded Multi-Span Beam [2015 International Building Code(2015 NDS)] 1.5 IN x 3.5 IN x 8.0 FT #2 - Hem-Fir - Dry Use Section Adequate By: 0.8% Controlling Factor: Deflection	StruCalc 9.0 page
DEFLECTIONS Center Live Load 0.53 IN L/181 Dead Load 0.01 in Total Load 0.54 IN L/177 Live Load Deflection Criteria: L/180 Total Load Deflection Criteria: L/180	/120
REACTIONSABLive Load100lb100lbDead Load4lb4lbTotal Load104lb104lbBearing Length0.17in0.17in	1
BEAM DATA Center Span Length 8 ft Unbraced Length-Top 0 ft Unbraced Length-Bottom 8 ft Live Load Duration Factor 1.60	A B
Notch Depth 0.00	UNIFORM LOADS Center
MATERIAL PROPERTIES #2 - Hem-Fir	Uniform Live Load 0 plf
Base ValuesAdjustedBending Stress: $Fb = 850 psi$ $Fb' = 2040$ $Cd=1.60 CF=1.50$	Uniform Dead Load 0 plf Beam Self Weight 1 plf Total Uniform Load 1 plf
Shear Stress: $Fv = 150 \text{ psi} Fv' = 240$	DSi POINT LOADS - CENTER SPAN Load Number One
$Cd=1.60$ Modulus of Elasticity:E = 1300 ksiE' = 1300Comp. \perp to Grain:Fc - \perp = 405 psiFc - \perp ' = 405	ksi Live Load 200 lb
Controlling Moment: 408 ft-lb	

4.0 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 **Controlling Shear:** -104 lb At right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Reg'd	Provided
Section Modulus:	2.4 in3	3.06 in3
Area (Shear):	0.65 in2	5.25 in2
Moment of Inertia (deflection):	5.32 in4	5.36 in4
Moment:	408 ft-lb	521 ft-lb
Shear:	-104 lb	840 lb

Project: Location: Single 2x6 stud (st Multi-Loaded Multi-Span Bea [2015 International Building 0 1.5 IN x 5.5 IN x 9.0 FT #2 - Hem-Fir - Dry Use Section Adequate By: 139.3' Controlling Factor: Moment	am Code(2015 NDS)]	StruCalc 9.0 StruCalc Version 10.0.1.6
DEFLECTIONS Center Live Load 0.19 IN I Dead Load 0.01 in Total Load 0.20 IN I Live Load Deflection Criterion Criterion	./556 ./533	LOADING DIAGRAM
REACTIONSALive Load100Dead Load7IbTotal Load107IbBearing Length0.18	B 100 lb 7 lb 107 lb 0.18 in	
BEAM DATA Span Length Unbraced Length-Top Unbraced Length-Bottom Live Load Duration Factor	<u>Center</u> 9 ft 0 ft 9 ft 1.60 0.00	A 9 ft B
Notch Depth MATERIAL PROPERTIES	0.00	UNIFORM LOADS Center
#2 - Hem-Fir		Uniform Live Load 0 plf Uniform Dead Load 0 plf
Bending Stress:	<u>Base Values</u> <u>Adjusted</u> Fb = 850 psi Fb' = 1768 psi <i>Cd=1.60 CF=1.30</i>	Beam Self Weight 2 plf Total Uniform Load 2 plf
Shear Stress:	Fv = 150 psi Fv' = 240 psi <i>Cd=1.60</i>	POINT LOADS - CENTER SPAN Load Number One
Modulus of Elasticity: Comp. [⊥] to Grain:	E = 1300 ksi E' = 1300 ksi Fc - ⊥ = 405 psi Fc - ⊥' = 405 psi	Live Load 200 lb Dead Load 0 lb Location 4.5 ft
Controlling Moment:	466 ft-lb	

4.5 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: -107 lb At right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	Provided
Section Modulus:	3.16 in3	7.56 in3
Area (Shear):	0.67 in2	8.25 in2
Moment of Inertia (deflection):	6.73 in4	20.8 in4
Moment:	466 ft-lb	1114 ft-lb
Shear:	-107 lb	1320 lb

Project: Location: Double 2x4 stud (f Multi-Loaded Multi-Span Be [2015 International Building (2) 1.5 IN x 3.5 IN x 8.0 FT #2 - Hem-Fir - Dry Use Section Adequate By: 101.6 Controlling Factor: Deflectio	Code(2015 NDS)] %	StruCalc 9.0 StruCalc Version 10.0.1.6
DEFLECTIONSCenterLive Load0.26INDead Load0.01inTotal Load0.28INLive Load Deflection Criter	L/363 L/346	LOADING DIAGRAM
REACTIONSALive Load100Dead Load8Total Load108Bearing Length0.09	B 100 lb 8 lb 108 lb 0.09 in	
BEAM DATA Span Length Unbraced Length-Top Unbraced Length-Bottom Live Load Duration Factor Notch Depth	<u>Center</u> 8 ft 0 ft 8 ft 1.60 0.00	A str. B
MATERIAL PROPERTIES #2 - Hem-Fir Bending Stress:	<u>Base Values</u> <u>Adjusted</u> Fb = 850 psi Fb' = 2040 psi	UNIFORM LOADS Center Uniform Live Load 0 plf Uniform Dead Load 0 plf Beam Self Weight 2 plf Total Uniform Load 2 plf
Shear Stress: Modulus of Elasticity: Comp. [⊥] to Grain:	$Cd=1.60 \ CF=1.50$ $Fv = 150 \ psi$ $Fv' = 240 \ psi$ Cd=1.60 $E = 1300 \ ksi$ $E' = 1300 \ ksi$ $Fc - \bot = 405 \ psi$ $Fc - \bot' = 405 \ psi$	POINT LOADS - CENTER SPAN Load Number One Live Load 200 lb Dead Load 0 lb Location 4 ft
Controlling Moment: 4.0 Et from left support of	416 ft-lb	

4.0 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 **Controlling Shear:** 108 lb At left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	<u>Req'd</u>	Provided
Section Modulus:	2.45 in3	6.13 in3
Area (Shear):	0.67 in2	10.5 in2
Moment of Inertia (deflection):	5.32 in4	10.72 in4
Moment:	416 ft-lb	1041 ft-lb
Shear:	108 lb	1680 lb

Balloon Framed stud calculations

VITRUVIU CU PROJECT LO	STOMER:	3/3/2021 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	Man	Engineering & Desig Is Thurfjell Is Thurfjell	n, LLC
, LEVEL: Roof LOCATION: 2x6 Ballo TYPE: COLUMN MATERIAL: SOLID SA				LOADING: ind load GotMe r a NDS:		BolnatueednaahticownaalaBouliu)in BNDS	ıg Code
Hem-Fir	No	o. 2	(1) 1.5 X 5.5	DRY			

	Area		lx	ly		BSW	Lar	ns	G		Kcr
	(in²)		(in⁴)	(in⁴)		(lbf/ft)				Cre	eep Factor
	8.25		20.8	1.55		1.63	1		0.43		1
STR	ENGTH PR	ROPERTIE	S								
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10³
Base	e Values	850	525		150	1300		405	1300		470
djusted	l Values	1105	682		150	1430		405	1300		470
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
	с _і	1	1		1	1		1	1		1
	с _F	1.3	1.3		1	1.1		1	1		1
endin	g Adjustment	Factors	C _{fu} = 1 C _r = 1								
COL	UMN DA	TA									
			Unbraced Length	(ft)	Column End						
Span	Lenc	jth (ft)	X	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1		7.25	17.25	1	0	0.18	1.00	1.00	37.64	8	
DAG		,									
PAS	S-FAIL										
- 7.5			PASS/FAIL	MAG	GNITUDE	STRENGTH		ATION (ft)	LOAD COMBO	DURAT	ON FACTOR
		ress Y (psi)	PASS (89.5%)		15.7	150.0		17.25	D+L	DURATI	ON FACTOR 1
	Bending Str	ess Y (psi)	PASS (89.5%) PASS (46.3%)		15.7 590.2	150.0 1099.4		17.25 8.62	D+L D+L	DURAT	
	Bending Str Def	ess Y (psi) lection (in)	PASS (89.5%) PASS (46.3%) PASS (35.9%)	0.737	15.7 590.2 7 (=L/281)	150.0 1099.4 1.150 (=L/180)		17.25 8.62 8.62	D+L D+L L	DURATI	
	Bending Str Defi Compressive S	ess Y (psi) ection (in) stress (psi)	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%)	0.737	15.7 590.2 7 (=L/281) 100.4	150.0 1099.4		17.25 8.62 8.62 0	D+L D+L	DURATI	
C	Bending Str Defl Compressive S Bearing S	eess Y (psi) lection (in) stress (psi) stress (psi)	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%)	0.737	15.7 590.2 7 (=L/281)	150.0 1099.4 1.150 (=L/180)		17.25 8.62 8.62 0 0	D+L D+L L	DURATI	1 1 1 1
C	Bending Str Defi Compressive S	eess Y (psi) lection (in) stress (psi) stress (psi)	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%)	0.737	15.7 590.2 7 (=L/281) 100.4	150.0 1099.4 1.150 (=L/180) 261.1		17.25 8.62 8.62 0	D+L D+L L D+L	DURATI	1 1 1 1
G Bendi	Bending Str Defi Compressive S Bearing S ing-Compress	eess Y (psi) lection (in) stress (psi) stress (psi) sion (Unit)	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%)	0.737	15.7 590.2 7 (=L/281) 100.4 16.4	150.0 1099.4 1.150 (=L/180) 261.1 1430.0		17.25 8.62 8.62 0 0	D+L D+L L D+L D+L	DURATI	1 1 1 1
C Bendi REA	Bending Str Defi Compressive S Bearing S ing-Compress	lection (in) Stress (psi) Stress (psi) Ston (Unit) Units for V	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%)	0.737 Ibf-ft	15.7 590.2 7 (=L/281) 100.4 16.4 0.98	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00		17.25 8.62 8.62 0 0 8.62	D+L D+L L D+L D+L D+L		1 1 1 1 1
C Bendi REA Z axis	Bending Str Defi Compressive S Bearing S ing-Compress CTIONS DEAD	ess Y (psi) lection (in) Stress (psi) Stress (psi) ston (Unit) Units for LIVE	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%) V: Ibf Units for M: LIVE ROOF	0.737 Ibf-ft SNOW	15.7 590.2 7 (=L/281) 100.4 16.4 0.98 WIND +	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND -	SEISMIC +	17.25 8.62 8.62 0 0 8.62 SEISMIC -	D+L D+L D+L D+L D+L	RAIN	1 1 1 1 1 5 EARTH
C Bendi REA Caxis A	Bending Str Defi Compressive S Bearing S ing-Compress CTIONS DEAD 328	ess Y (psi) lection (in) Stress (psi) Stress (psi) stion (Unit) Units for V LIVE 500	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%) V: lbf Units for M: LIVE ROOF 0	0.737 Ibf-ft SNOW 0	15.7 590.2 7 (=L/281) 100.4 16.4 0.98 WIND + 0	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND - 0	SEISMIC + 0	17.25 8.62 8.62 0 0 8.62 SEISMIC - 0	D+L D+L L D+L D+L D+L ICE 0	RAIN 0	1 1 1 1 1 5 EARTH 0
C Bendi REA Z axis A B	Bending Str Defi Compressive S Bearing S ing-Compress CTIONS DEAD	ess Y (psi) lection (in) Stress (psi) Stress (psi) ston (Unit) Units for LIVE	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%) V: Ibf Units for M: LIVE ROOF	0.737 Ibf-ft SNOW	15.7 590.2 7 (=L/281) 100.4 16.4 0.98 WIND +	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND -	SEISMIC +	17.25 8.62 8.62 0 0 8.62 SEISMIC -	D+L D+L D+L D+L D+L	RAIN	1 1 1 1 1 5 EARTH
Bendi REA Axis A B axis	Bending Str Defi Compressive S Bearing S ing-Compress CCTIONS DEAD 328 0	ess Y (psi) lection (in) stress (psi) stress (psi) storess (psi) store (Unit) Units for V LIVE 500 0	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%) V: Ibf Units for M: LIVE ROOF 0 0	0.737 Ibf-ft SNOW 0 0	15.7 590.2 7 (=L/281) 100.4 16.4 0.98 WIND + 0 0	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND - 0 0	SEISMIC + 0 0	17.25 8.62 8.62 0 0 8.62 SEISMIC - 0 0	D+L D+L D+L D+L D+L ICE 0 0	RAIN 0 0	1 1 1 1 1 EARTH 0 0
Bendi REA Caxis A	Bending Str Defi Compressive S Bearing S ing-Compress CTIONS DEAD 328	ess Y (psi) lection (in) Stress (psi) Stress (psi) stion (Unit) Units for V LIVE 500	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%) V: lbf Units for M: LIVE ROOF 0	0.737 Ibf-ft SNOW 0	15.7 590.2 7 (=L/281) 100.4 16.4 0.98 WIND + 0	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND - 0	SEISMIC + 0	17.25 8.62 8.62 0 0 8.62 SEISMIC - 0	D+L D+L L D+L D+L D+L ICE 0	RAIN 0	1 1 1 1 1 5 EARTH 0

Α

В

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Uniform (lbf/ft)	10	10	0	17.25	Live	Y
Point (lbf)	-500	-	17.25	-	Live	Z
Point (lbf)	-300	-	17.25	-	Dead	Z
Self Weight (lbf/ft)	1.63	1.63	0	17.25	Dead	Z

NOTES

Page 20

	DATE:	3/3/2021		COMPANY:	L120	Engineering & Desig	gn, LLC
VITRUVIU	IS BUILD:	StruCalc		DESIGNED BY:	Man	s Thurfjell	
CU	STOMER:			REVIEWED BY:	Man	s Thurfjell	
PROJECT LO	CATION:						
		,					
	LEVEL:	Roof		LOADING:	ASD		
LC	OCATION:	1.75x5.5 L	SL Balloon Frame (@	12") (win 6000aEd f	fa 203 8	appeliedtaona st Boniva in	ag 🖾 de
	TYPE:	COLUMN		NDS:	2018	S NDS	
M	ATERIAL:	STRUCTU	RAL COMPOSITE LUN	/IBER			
Weyerhaeuser			(1) 1.75 X 5.5	DRY			

	Area		lx	ly		BSW	Lan	ns	Cfn		Kcr
	(in²)		(in ⁴)	(in⁴)		(lbf/ft)				Cr	eep Factor
	9.62		24.26	2.46		3.01	1		10.87		1
STR	ENGTH F	PROPERTIE									
	-	Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10 ³
	Values	2325	1290		310	2170		900	1550		787.815
justed	Values	2325	1290		310	2170		900	1550		788
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
-	g Adjustme		C _V = 1.07 C _r = 1	Volun	ne factor Is app	lied on a load co	nbination bas	is And Is Not re	flected in the adju	isted value	es
COL	UMN DA	ATA	Unbraced Length	(ft)	Column End						
pan	le	ngth (ft)	X	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (V Axis)
1		17.25	17.25	1	0	0.21	1.00	1.00	37.64	6.8	
ΡΔς	S-FAIL										
173	5 TAIL		PASS/FAIL	MAG	GNITUDE	STRENGTH	LOCA	TION (ft)	LOAD COMBO	DURAT	ION FACTOR
	Shear S	Stress Y (psi)	PASS (95.7%)		13.4	310.0		17.25	D+L		1
	Bending S	tress Y (psi)	PASS (79.7%)		505.9	2486.4		8.62	D+L		1
	De	eflection (in)	PASS (53.9%)	0.530) (=L/391)	1.150 (=L/180)		8.62	L		
С	ompressive	Stress (psi)	PASS (40.5%)		265.1	445.7		0	D+L		1
	Bearing	Stress (psi)	PASS (99.4%)		14.1	2170.0		0	D+L		1
Bendi	ng-Compre	ssion (Unit)	PASS (17.5%)		0.82	1.00		8.45	D+L		1
REA	CTIONS	Units for	V: lbf Units for M	lbf-ft							
axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
А	1052	1500	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
axis											
Α	0	86	0	0	0	0	0	0	0	0	0
В	0	86	0	0	0	0	0	0	0	0	0

LOAD LIST	LOAD LIST										
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction					
Point (lbf)	-1500	-	17.25	-	Live	Z					
Point (lbf)	-1000	-	17.25	-	Dead	Z					
Uniform (lbf/ft)	10	10	0	17.25	Live	Y					
Self Weight (lbf/ft)	3.01	3.01	0	17.25	Dead	Z					
Self Weight (lbf/ft)	3.01	3.01	0	17.25	Dead	Z					

NOTES

Page 22

VITRUVIUS CUS PROJECT LOC	TOMER:	3/3/2021 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	Man	Engineering & Desig s Thurfjell s Thurfjell	n, LLC
	LEVEL: CATION: TYPE: ATERIAL:	, Roof 2x6 Ballo COLUMN SOLID SA		LOADING: ind load &@De : a NDS:			g Code
Hem-Fir	No	. 2	(1) 1.5 X 5.5	DRY			

	Area		lx	ly		BSW	Lan	ns	G		Kcr
	(in ²)		(in ⁴)	(in⁴)		(lbf/ft)			-	Cr	eep Factor
	8.25		20.8	1.55		1.63	1		0.43		1
STR	ENGTH P	ROPERTIE	S								
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10³
Base	e Values	850	525		150	1300		405	1300		470
ljusted	l Values	1105	682		150	1430		405	1300		470
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
	с _і	1	1		1	1		1	1		1
	с _F	1.3	1.3		1	1.1		1	1		1
endin	g Adjustmen	t Factors	C _{fu} = 1 C _r = 1								
COI	UMN DA	ТΔ									
COL			Unbraced Length	(ft)	Column End						
pan	len	gth (ft)	X	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (V Axis)
1		7.25	17.25	1	0	0.18	1.00	1.00	37.64	8	
				•	•	00			0.101		
	S-FAIL										
PAS											
PAS			PASS/FAIL	MAG	GNITUDE	STRENGTH	LOCA	ATION (ft)	LOAD COMBO	DURAT	ION FACTOR
PAS		ress Y (psi)	PASS (92.7%)	MAG	GNITUDE 11.0	STRENGTH 150.0		ATION (ft) 17.25	LOAD COMBO D+L	DURAT	ION FACTOR 1
PAS	Bending St	ress Y (psi)	PASS (92.7%) PASS (62.4%)							DURAT	
	Bending St Def	ress Y (psi) flection (in)	PASS (92.7%)		11.0	150.0		17.25	D+L	DURAT	
	Bending St	ress Y (psi) flection (in)	PASS (92.7%) PASS (62.4%)	0.516	11.0 413.1	150.0 1099.4		17.25 8.62	D+L D+L	DURAT	ION FACTOR 1 1
	Bending St Def Compressive	ress Y (psi) flection (in)	PASS (92.7%) PASS (62.4%) PASS (55.1%)	0.516	11.0 413.1 (=L/401)	150.0 1099.4 1.150 (=L/180)		17.25 8.62 8.62	D+L D+L L	DURAT	
C	Bending St Def Compressive	rress Y (psi) flection (in) Stress (psi) Stress (psi)	PASS (92.7%) PASS (62.4%) PASS (55.1%) PASS (49.9%)	0.516	11.0 413.1 (=L/401) 130.7	150.0 1099.4 1.150 (=L/180) 261.1		17.25 8.62 8.62 0	D+L D+L L D+L	DURAT	1 1 1
G Bendi	Bending St Def Compressive Bearing Ing-Compres	rress Y (psi) flection (in) Stress (psi) Stress (psi) sion (Unit)	PASS (92.7%) PASS (62.4%) PASS (55.1%) PASS (49.9%) PASS (99.2%) PASS (4.3%)	0.516	11.0 413.1 (=L/401) 130.7 11.5	150.0 1099.4 1.150 (=L/180) 261.1 1430.0		17.25 8.62 8.62 0 0	D+L D+L L D+L D+L	DURAT	1 1 1 1
C Bendi REA	Bending St Def Compressive Bearing Ing-Compres	rress Y (psi) flection (in) Stress (psi) Stress (psi) sion (Unit) Units for	PASS (92.7%) PASS (62.4%) PASS (55.1%) PASS (49.9%) PASS (99.2%) PASS (4.3%)	0.516 Ibf-ft	11.0 413.1 (=L/401) 130.7 11.5 0.96	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00		17.25 8.62 8.62 0 0 8.45	D+L D+L L D+L D+L D+L		1 1 1 1 1
C Bendi REA Z axis	Bending St Def Compressive Bearing Ing-Compres CTIONS DEAD	ress Y (psi) flection (in) Stress (psi) Stress (psi) sion (Unit) Units for LIVE	PASS (92.7%) PASS (62.4%) PASS (55.1%) PASS (49.9%) PASS (99.2%) PASS (4.3%) V: lbf Units for M: LIVE ROOF	0.516 Ibf-ft SNOW	11.0 413.1 (=L/401) 130.7 11.5 0.96 WIND +	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND -	SEISMIC +	17.25 8.62 8.62 0 0 8.45 SEISMIC -	D+L D+L D+L D+L D+L	RAIN	1 1 1 1 1 5 EARTH
C Bendi REA Caxis A	Bending St Def Compressive Bearing Ing-Compres CTIONS DEAD 528	ress Y (psi) flection (in) Stress (psi) Stress (psi) sion (Unit) Units for LIVE 550	PASS (92.7%) PASS (62.4%) PASS (55.1%) PASS (49.9%) PASS (99.2%) PASS (4.3%) V: lbf Units for M: LIVE ROOF 0	0.516 Ibf-ft SNOW 0	11.0 413.1 (=L/401) 130.7 11.5 0.96 WIND + 0	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND - 0	SEISMIC + 0	17.25 8.62 8.62 0 0 8.45 SEISMIC - 0	D+L D+L L D+L D+L D+L ICE 0	RAIN	1 1 1 1 1 5 EARTH 0
C Bendi REA Z axis A B	Bending St Def Compressive Bearing Ing-Compres CTIONS DEAD	ress Y (psi) flection (in) Stress (psi) Stress (psi) sion (Unit) Units for LIVE	PASS (92.7%) PASS (62.4%) PASS (55.1%) PASS (49.9%) PASS (99.2%) PASS (4.3%) V: lbf Units for M: LIVE ROOF	0.516 Ibf-ft SNOW	11.0 413.1 (=L/401) 130.7 11.5 0.96 WIND +	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND -	SEISMIC +	17.25 8.62 8.62 0 0 8.45 SEISMIC -	D+L D+L D+L D+L D+L	RAIN	1 1 1 1 1 5 EARTH
Bendi REA axis A B axis	Bending St Def Compressive Bearing ing-Compres CCTIONS DEAD 528 0	ress Y (psi) flection (in) Stress (psi) Stress (psi) sion (Unit) Units for Y LIVE 550 0	PASS (92.7%) PASS (62.4%) PASS (55.1%) PASS (49.9%) PASS (99.2%) PASS (4.3%) V: lbf Units for M: LIVE ROOF 0 0	0.516 Ibf-ft SNOW 0 0	11.0 413.1 (=L/401) 130.7 11.5 0.96 WIND + 0 0	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND - 0 0	SEISMIC + 0 0	17.25 8.62 8.62 0 0 8.45 SEISMIC - 0 0	D+L D+L D+L D+L D+L ICE 0 0	RAIN 0 0	1 1 1 1 1 EARTH 0 0
C Bendi REA Caxis A	Bending St Def Compressive Bearing Ing-Compres CTIONS DEAD 528	ress Y (psi) flection (in) Stress (psi) Stress (psi) sion (Unit) Units for LIVE 550	PASS (92.7%) PASS (62.4%) PASS (55.1%) PASS (49.9%) PASS (99.2%) PASS (4.3%) V: lbf Units for M: LIVE ROOF 0	0.516 Ibf-ft SNOW 0	11.0 413.1 (=L/401) 130.7 11.5 0.96 WIND + 0	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND - 0	SEISMIC + 0	17.25 8.62 8.62 0 0 8.45 SEISMIC - 0	D+L D+L L D+L D+L D+L ICE 0	RAIN	1 1 1 1 1 5 EARTH 0

Α

В

LOAD LIST										
Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction					
-550	-	17.25	-	Live	Z					
-500	-	17.25	-	Dead	Z					
7	7	0	17.25	Live	Y					
1.63	1.63	0	17.25	Dead	Z					
	-550 -500 7	-550 - -500 - 7 7	-550 - 17.25 -500 - 17.25 7 7 0	-550 - 17.25 - -500 - 17.25 - 7 7 0 17.25	-550 - 17.25 - Live -500 - 17.25 - Dead 7 7 0 17.25 Live					

NOTES

Page 24

VITRUVIU CUS PROJECT LO	STOMER:	3/3/2021 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	Mar) Engineering & Desig ns Thurfjell ns Thurfjell	ın, LLC
	TYPE:	COLUMN	-	NDS:) 3a ppliedataodalBoxildia 3 NDS	திரூde
Weyerhaeuser	1.55E Timbe	rStrand LSL	(1) 1.75 X 5.5	DRY			

	Area		lx	ly		BSW	Lan	15	Cfn		Kcr
	(in²)		(in⁴)	(in⁴)		(lbf/ft)				Cr	eep Factor
	9.62		24.26	2.46		3.01	1		10.87		1
STR	ENGTH F	PROPERTIE									
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10 ³
	Values	2325	1290		310	2170		900	1550		787.815
ljusted	Values	2325	1290		310	2170		900	1550		788
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
-	J Adjustme		C _V = 1.07 C _r = 1	Volun	ne factor Is app	lied on a load co	mbination bas	is And Is Not re	flected in the adju	isted valu	es
COL	UMN DA	ATA	Unbraced Length	(f+)	Column End						
Span	Le	ngth (ft)	X	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (V Axis)
1		17.25	17.25	1	0	0.21	1.00	1.00	37.64	6.8	-
DAS	S-FAIL										
17.3			PASS/FAIL	MAG	GNITUDE	STRENGTH	LOCA	TION (ft)	LOAD COMBO	DURAT	ION FACTOR
	Shear S	Stress Y (psi)	PASS (97.0%)		9.4	310.0		17.25	D+L		1
	Bending S	tress Y (psi)	PASS (85.8%)		354.1	2486.4		8.62	D+L		1
	De	eflection (in)	PASS (67.7%)	0.371	(=L/558)	1.150 (=L/180)		8.62	L		
c	ompressive	Stress (psi)	PASS (28.9%)		317.1	445.7		0	D+L		1
	Bearing	J Stress (psi)	PASS (99.5%)		9.9	2170.0		0	D+L		1
Bendi	ng-Compre	ssion (Unit)	PASS (4.6%)		0.95	1.00		8.45	D+L		1
REA	CTIONS	Units for	V: lbf Units for M	lbf-ft							
axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	1052	2000	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
axis											
А	0	60	0	0	0	0	0	0	0	0	0
в	0	60	0	0	0	0	0	0	0	0	0

LOAD LIST										
Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction					
-1000	-	17.25	-	Dead	Z					
-2000	-	17.25	-	Live	Z					
7	7	0	17.25	Live	Y					
3.01	3.01	0	17.25	Dead	Z					
	-1000 -2000 7	-1000 - -2000 - 7 7 7	-1000 - 17.25 -2000 - 17.25 7 7 0	-1000 - 17.25 - -2000 - 17.25 - 7 7 0 17.25	-1000 - 17.25 - Dead -2000 - 17.25 - Live 7 7 0 17.25 Live					

NOTES

Page 26

Ledger Calculations

		PROJECT NO.	SHEET NO.
	PROJECT		
LONGITUDE ONE TWENTY [®] ENGINEERING & DESIGN	SUBJECT	DATE _	/ /

Table 12.3.3A Assigned Specific Gravities

Species Combination	Specific ¹ Gravity, G	Species Combinations of MSR and MEL Lumber	Specific ¹ Gravity, G
Alaska Cedar	0.47	Douglas Fir-Larch	
Alaska Hemlock	0.46	E=1,900,000 psi and lower grades of MSR	0.50
Alaska Spruce	0.41	E=2,000,000 psi grades of MSR	0.51
Alaska Yellow Cedar	0.46	E=2,100,000 psi grades of MSR	0.52
Aspen BEAMS (DF #2, and Engineer	0.39	E=2,200,000 psi grades of MSR	0.53
Balsam Fir	0.36	E=2,300,000 psi grades of MSR	0.54
Beech-Birch-Hickory	0.71	E=2,400,000 psi grades of MSR	0.55
Coast Sitka Spruce	0.39	Douglas Fir-Larch (North)	
Cottonwood	0.41	E=1,900,000 psi and lower grades of MSR and MEL	0.49
Douglas Fir-Larch	0.50	E=2,000,000 psi to 2,200,000 psi grades of MSR and MEL	0.53
Douglas Fir-Larch (North)	0.49	E=2,300,000 psi and higher grades of MSR and MEL	0.57
Douglas Fir-South	0.46	Douglas Fir-Larch (South)	
Eastem Hemlock	0.41	E=1,000,000 psi and higher grades of MSR	0.46
Eastern Hemlock-Balsam Fir	0.36	Engelmann Spruce-Lodgepole Pine	
Eastern Hemlock-Tamarack	0.41	E=1,400,000 psi and lower grades of MSR	0.38
Eastern Hemlock-Tamarack (North)	0.47	E=1,500,000 psi and higher grades of MSR	0.46
Eastern Softwoods Joists and 2x members (HF	#2) 0.36	Hem-Fir	
Eastern Spruce	0.41	E=1,500,000 psi and lower grades of MSR	0.43
Eastern White Pine	0.36	E=1,600,000 psi grades of MSR	0.44
Engelmann Spruce-Lodgepole Pine	0.38	E=1,700,000 psi grades of MSR	0.45
Hem-Fir	0.43	E=1,800,000 psi grades of MSR	0.46
Hem-Fir (North)	0.46	E=1,900,000 psi grades of MSR	0.47
Mixed Maple	0.55	E=2,000,000 psi grades of MSR	0.48
Mixed Oak	0.68	E=2,100,000 psi grades of MSR	0.49
Mixed Southern Pine	0.51	E=2,200,000 psi grades of MSR	0.50
Mountain Hemlock	0.47	E=2,300,000 psi grades of MSR	0.51
Northern Pine	0.42	E=2,400,000 psi grades of MSR	0.52
Northern Red Oak	0.68	Hem-Fir (North)	
Northern Species	0.35	E=1,000,000 psi and higher grades of MSR and MEL	0.46
Northern White Cedar	0.31	Southern Pine	
Ponderosa Pine	0.43	E=1,700,000 psi and lower grades of MSR and MEL	0.55
Red Maple	0.58	E=1,800,000 psi and higher grades of MSR and MEL	0.57
Red Oak	0.67	Spruce-Pine-Fir	
Red Pine	0.44	E=1,700,000 psi and lower grades of MSR and MEL	0.42
Redwood, close grain	0.44	E=1,800,000 psi and 1,900,000 grades of MSR and MEL	0.46
Redwood, open grain	0.37	E=2,000,000 psi and higher grades of MSR and MEL	0.50
Sitka Spruce	0.43	Spruce-Pine-Fir (South)	
Southern Pine	0.55	E=1,100,000 psi and lower grades of MSR	0.36
Spruce-Pine-Fir	0.42	E=1,200,000 psi to1,900,000 psi grades of MSR	0.42
Spruce-Pine-Fir (South)	0.36	E=2,000,000 psi and higher grades of MSR	0.50
Western Cedars	0.36	Western Cedars	
Western Cedars (North)	0.35	E=1,000,000 psi and higher grades of MSR	0.36
Western Hemlock	0.47	Western Woods	
Western Hemlock (North)	0.46	E=1,000,000 psi and higher grades of MSR	0.36
Western White Pine	0.40		
Western Woods	0.36		
White Oak	0.73		
Yellow Poplar	0.43		

 Specific gravity, G, based on weight and volume when oven-dry. Different specific gravities, G, are possible for different grades of MSR and MEL lumber (see Table 4C, Footnote 2).

		PROJECT NO.	SHEET NO.
	PROJECT		
LONGITUDE	SUBJECT _		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /

Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections1,2,3,4

U,

								alues a ne ma						assu	med	length	1 of la				
Side Member Thickness	Lag Screw Diameter	G=0.67	Red Oak	G=0.55 Microit Mania	Southern Pine	G=0.5	Douglas Fir-Larch	G=0,49 Douclas Fir-Larch		G=0.46 Devotes Fields	Hem-Fir(N)	G=0.43	Hem-Fir	G=0.42	Spruce-Pine-Fir	G=0.37 Bedunod	(open grain)	G=0.36 Eastern Softwoods	Western Woods	G=0.35	Northern Species
t,	D in.	Z _{II} Ibs.	Z ₁	Z _{ii}	Z_	Z _{II}	Z_	Z _{II} Ibs.	Z_	Z _{II} Ibs.	Z_	Z _{II}	Z_	Z _{II} Ibs.	Z_	Z _{II} Ibs.	Z ₁	Z _{ii}	Z_	Z _{II}	
0.075	1/4	170	130	160	120	150	110	150	110	150	100	140	100	140	100	130	90	130	90	130	_
(14 gage)	5/16	220	160	200	140	190	130	190	130	190	130	180	120	180	120	170	110	170	110	160	
	3/8	220	160	200	140	200	130	190	130	190	120	180	120	180	120	170	110	170	100	170	
0.105	1/4	180	140	170	130	160	120	160	120	160	110	150	110	150	110	140	100	140	100	140	
(12 gage)	5/16	230	170	210	150	200	140	200	140	190	130	190	130	190	120	180	110	170	110	170	
	3/8	230	160	210	140	200	140	200	130	200	130	190	120	190	120	180	110	180	110	170	_
0.120	1/4	190	150	180	130	170	120	170	120	160	120	160	110	160	110	150	100	150	100	140	
(11 gage)	5/16	230	170	210	150	210	140	200	140	200	140	190	130	190	130	180	120	180	120	180	
0.134	3/8	240	170	220	150	210	140	210	140	200	130	200	130	190	120	180	110	180	110	180	_
	1/4	200	150	180	140	180 210	130	170	130	170	120	160	120	160 200	110 130	150	110	150	100	150	
(10 gage)	5/16 3/8	240 240	180 170	220 220	160 150	210	150 140	210 210	140 140	200 210	140 140	200	130 130	200	130	190 190	120 120	180 190	120 120	180 180	
0.179	1/4	240	170	210	150	200	150	200	140	190	140	190	130	190	130	180	120	170	120	170	_
(7 gage)	5/16	260	190	240	170	230	160	230	160	230	150	220	150	220	150	210	130	200	130	200	
(/ gage)	3/8	270	190	250	170	240	160	240	160	230	150	220	140	220	140	210	130	210	130	200	
0.239	1/4	240	180	220	160	210	150	210	150	200	140	190	140	190	130	180	120	180	120	180	_
(3 gage)	5/16	300	220	280	190	270	180	260	180	260	170	250	160	250	160	230	150	230	150	230	
(- 0-0-/	3/8	310	220	280	190	270	180	270	180	260	170	250	160	250	160	240	140	230	140	230	
	7/16	420	290	390	260	380	240	370	240	360	230	350	220	350	220	330	200	330	200	320	
	1/2	510	340	470	300	460	290	450	280	440	270	430	260	420	260	400	240	400	230	390	
	5/8	770	490	710	430	680	400	680	400	660	380	640	370	630	360	600	330	590	330	580	
	3/4	1110	670	1020	590	980	560	970	550	950	530	920	500	910	500	860	450	850	450	840	
	7/8	1510	880	1390	780	1330	730	1320	710	1280	690	1250	650	1230	650	1170	590	1160	590	1140	
	1	1940	1100	1780	960	1710	910	1700	890	1650	860	1600	820	1590	810	1500	740	1480	730	1460	
1/4	1/4	240	180	220	160	210	150	210	150	200	140	200	140	190	130	180	120	180	120	180	
	5/16	310	220	280	200	270	180	270	180	260	170	250	170	250	160	230	150	230	150	230	
	3/8	320	220	290	190	280	180	270	180	270	170	260	160	250	160	240	150	240	140	230	
	7/16	480	320	440	280	420	270	420	260	410	250	390	240	390	230	370	220	360	210	360	
	1/2 5/8	580	390	540	340	520	320 440	510	320 440	500	310	480	290	480	290	460	270	450	260	440	
	3/4	850 1200	530 730	780	470 640	750	440 600	740	440 590	720 1020	420 570	700 990	400 540	690 980	400 530	660 930	490	650 920	360 480	640 900	
	3/4 7/8	1200	930	1470	820	1410	770	1400	750	1360	720	1320	690	1310	680	1240	630	1220	480 620	1200	
	1	2040	1150	1470	1000	1800	950	1780	930	1730	900	1680	850	1660	840	1240	770	1220	760	1200	

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

Tabulated lateral design values, Z, shall be intripried by an appreciate adjustment factors (see Table 11.5.1).
 Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 8D; dowel bearing strengths, F_e, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, F_{yin} of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D ≥3/8".
 Where the lag screw penetration, p, is less than 8D but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values.

shall be calculated using the provisions of 12.3 for the reduced penetration.
4. The length of lag screw penetration, p, not including the length of the tapered tip, E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p_{min}.

SDS connection of steel plate to wood, assuming HF, 100 lbs per 1/4" DIA SDS un-factored, without group action reduction, pending application/spacing.

									PF	ROJEC	T NO.	SH	EET NO
Ż			H		PROJ	ECT _							
_			UD	E	SUBJ	ECT _							
-			NTY ^o Design		BY					I	DATE _	/	/
able		(f	two men or sawn l tabulated	mber) Co umber or S d lateral de	nnection SCL with bo esign value	s ^{1,2,3} oth membes are calc o the mair	Design V ers of ident culated bas member e	tical speci ed on an a	fic gravity assumed I	r			100I
Side Member Thickness	Wood Screw Diameter	Wood Screw Number	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch(N	G=0.46 Douglas Fir(S) Hem-Fir(N)	G≐0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedans Western Woods	G=0.35 Northern Species	SCR
t, in.	D in,	5	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	Ibs.	lbs.	lbs.	~
1/2	0.138 0.151 0.164	6 7 8	88 96 107	67 74 82	59 65 73	57 63 71	53 59 66	49 54 61	47 52 59	41 45 51	40 44 50	38 42 48	E
	0.177 0.190 0.216 0.242	9 10 12 14	121 130 156 168	94 101 123 133	83 90 110 120	81 87 107 117	76 82 100 110	70 75 93 102	68 73 91 99	59 64 79 87	58 63 78 86	56 60 75 83	S
5/8	0.138 0.151 0.164 0.177 0.190	6 7 8 9	94 104 120 136 146	76 83 92 103 111	66 72 80 91 97	64 70 77 88 94	59 64 72 81 88	53 58 65 74 80	52 56 63 72 78	44 48 54 62 67	43 47 53 61 65	41 45 51 58 63	
	0.216	12 14	173 184	133 142	117 126	114 123	106 115	97 106	95 103	82 89	80 87	77 84	5
3/4	0.138	6	94	79	72	71	65	58	57	47	46	44	8
	0.151		104 120 142	87 101	80 88 99	77 85 96	71 78 88	64 71 80	62 69 78	52 58 66	50 56 64	48 54 61	
	0.177		153	114 122	107	103	95	86	83	71	69	66	- F
(3) SDS\ " o.c w/	N screws 60 psf LL	into RI and 10	M @ 12" o.c s psf DL - loadi	tud. Assuming ving on each con	vorst case with nection, stagger	12' deck framing ed, (and ignoring)	with duration = 1. with connection g capacity of typ ber (LSL) - 489#,	ical	100 108 61 68 78	86 93 55 60 67	84 91 54 59 65	80 87 51 56 62	WEL-TYPE FASTENERS
	0.177	9	142	118	108	106	100	94	90	75	73	70	AS
	0.190 0.216		153 193	128 161	117 147	114 143	108 131	101 118	97 114	81 96	78 93	75 89	E
1-1/4	0.242	14 6	213 94	178 79	157 72	152 71	139 67	126 63	122 61	102 55	100	95 52	R
2010026	0 151	7	104	87	80	78	74	69	68	60	59	57	S

	0.177 9	142	118	108	106	100	94	90	75	73	70
	0.190 10	153	128	117	114	108	101	97	81	78	70 75
	0.216 12	193	161	147	143	131	118	114	96	93	89
73	0.242 14	213	178	157	152	139	126	122	102	100	95
1-1/4	0.138 6	94	79	72	71	67	63	61	55	54	52
2210263	0.151 7	104	87	80	78	74	69	68	60	59	57
	0.164 8	120	101	92	90	85	80	78	70	68	66
	0.177 9	142	118	108	106	100	94	92	82	80	78
	0.190 10	153	128	117	114	108	101	99	88	87	84
	0.216 12	193	161	147	144	137	128	125	108	105	100
0000112-8	0.242 14	213	178	163	159	151	141	138	115	111	106
1-1/2	0.138 6	94	79	72	71	67	63	61	55	54	52
	0.151 7	104	87	80	78	74	69	68	60	59	57 66
	0.164 8	120	101	92	90	85	80	78	70	68	66
	0.177 9	142	118	108	106	100	94	92	82	80	78
	0.190 10	153	128	117	114	108	101	99	88	87	84
	0.216 12	193	161	147	144	137	128	125	111	109	106
	0.242 14	213	178	163	159	151	141	138	123	120	117
1-3/4	0.138 6	94	79	72	71	67	63	61	55	54	52
	0.151 7	104	87	80	78	74	69	68	60	59	57
	0.164 8	120	101	92	90	85	80	78	70	68	66
	0.177 9	142	118	108	106	100	94	92	82	80	78
	0.190 10	153	128	117	114	108	101	99	88	87	84
	0.216 12	193	161	147	144	137	128	125	111	109	106
25	0.242 14	213	178	163	159	151	141	138	123	120	117

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Tabulated lateral design values, Z, are for rolled thread wood screws (see Appendix Table L3) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 10D; and screw bending yield strengths, F_{ybs} of 100,000 psi for 0.099" ≤ D ≤ 0.142", 90,000 psi for 0.142" < D ≤ 0.177", 80,000 psi for 0.177" < D ≤ 0.236", and 70,000 psi for 0.236" < D ≤ 0.273".
 Where the wood screw penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values.

shall be calculated using the provisions of 12.3 for the reduced penetration.

Interior: Typical Ledger connection w/ SDS, un-factored since typical floor loading application with duration = 1. Minimum (3) ESIGN SDSW screws into studs/rim @ 16° o.c stud. Assuming worst case with 14 floor framing with connections into RIM @ 16° o.c w/ 40 psf LL and 12 psf DL - loading on each connection, staggered, (and ignoring capacity of typical nailing of rim). Connection is 7' x 52 psf x 1.00 = 364# versus capacity into HF lumber (SS) - 423#, ok.

	PROJECT NO.	SHEET NO.
PROJECT		
SUBJECT		
BY	DATE _	/ /
	SUBJECT	PROJECT

Specific Gravity,	Lag Screw Diameter, D													
G ²	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8"	1"	1-1/8"	1-1/4"			
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327			
0.71	381	450	516	579	640	757	868	974	1077	1176	1273			
0.68	357	422	484	543	600	709	813	913	1009	1103	1193			
0.67	349	413	473	531	587	694	796	893	987	1078	1167			
0.58	281	332	381	428	473	559	641	719	795	869	940			
0.55	260	307	352	395	437	516	592	664	734	802	868			
0.51	232	274	314	353	390	461	528	593	656	716	775			
		and the second se	Colorador a	A PERSONAL PROPERTY AND A PERSON AND A PERSO	A	A CONTRACTOR OF	and the second se	and the second second		and the second se	A DESCRIPTION OF THE PARTY OF T			

Lag Screw Reference Withdrawal Design Values, W1

Tabulated withdrawal design values, W, for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Specific gravity, G, shall be determined in accordance with Table 12.3.3A. 1.

12.2.3.2 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of fastener penetration from 12.2.3.1 shall be multiplied by the length of fastener penetration, pt, into the wood member.

Table 12.2A

0.50

0 49

0.47

0.46

0.44

0.43

0.42

0.41

0.40

0.39

0.38

0.37

0.36

0.35

0.31

12.2.3.3 The reference withdrawal design value, in lbs/in. of penetration, for a single post-frame ring shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities and nail diameters given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'.

12.2.3.4 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of ring shank penetration from 12.2.3.3 shall be multiplied by the length of ring shank penetration, p_b into the wood member. 12.2.3.5 Nails and spikes shall not be loaded in

withdrawal from end grain of wood (Ceg=0.0). 12.2.3.6 Nails, and spikes shall not be loaded in

withdrawal from end-grain of laminations in crosslaminated timber (Ceg=0.0).

12.2.4 Drift Bolts and Drift Pins

Reference withdrawal design values, W, for connections using drift bolt and drift pin connections shall be determined in accordance with 11.1.1.3.

W = 180	00 G2 D	(12.2-4)	be
	Ledger withdrawal capacity - a embed (tip discounted) into S 3 = 805# per 16" of ledger cor	S/HF material = 179# x	(1.5 x

ON		/EN	TΥ	10	SUB	JECT							HEET NO.
	Table 1	2M	(tr for (ta	wo memb or sawn lun abulated la	ber) Conn nber or SCI ateral desi	L with AST	, 2,3 M 653, Gr are calcul	Design Va rade 33 sto ated base nember eq	eel side pl d on an as	late ssumed ler			
WOOD SCREW	Side Member Thickness	Wood Screw Diameter	Wood Screw Number	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch(N)	G=0.46 Douglas Fir(S) Hem-Fir(N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedars Western Woods	G≡0.35 Northern Species
00	t _s in. 0.036 (20 gage) 0.048	D in. 0.138 0.151 0.164 0.138	7 8	lbs. 89 99 113 90	lbs. 76 84 97 77	lbs. 70 78 89 71	lbs. 69 76 87 70	lbs. 66 72 83 67	lbs. 62 68 78 63	lbs. 60 67 77 61	lbs. 54 60 69 55	lbs. 53 59 67 54	bs. 52 57 66 53
	(18 gage) 0.060 (16 gage)	0.151 0.164 0.138 0.151 0.164	7 8 6 7 8	100 114 92 101 116	85 98 79 87 100	79 90 73 81 92	77 89 72 79 90	74 84 68 75 86	69 79 64 71 81	68 78 63 70 79	61 70 57 63 71	60 69 56 61 70	58 67 54 60 68
	0.075 (14 gage)	0.177 0.190 0.138 0.151 0.164 0.177 0.190 0.216	10 6 7 8 9 10	136 146 95 105 119 139 150 186	116 125 82 90 103 119 128 159	107 116 76 84 95 110 119 147	105 114 75 82 93 108 117 145	100 108 71 78 89 103 111 138	94 102 67 74 84 97 105 130	93 100 66 72 82 95 103 127	83 90 59 65 74 86 92 114	82 88 58 64 73 84 91 112	79 86 57 62 71 82 88 109
	0.105 (12 gage)	0.242 0.138 0.151 0.164 0.177 0.190	14 6 7 8 9 10	204 104 114 129 148 160	175 90 99 111 128 138	162 84 92 103 119 128	158 82 90 102 116 125	151 79 86 97 111 120	142 74 81 92 105 113	139 73 80 90 103 111	125 66 72 81 93 100	123 65 71 80 91 98	120 63 69 77 89 96
	0.120 (11 gage)	0.216 0.242 0.138 0.151 0.164 0.177 0.190 0.216 0.242	14 6 7 8 9 10 12	196 213 110 120 135 154 166 202 219	168 183 95 104 117 133 144 174 189	156 170 89 97 109 124 133 162 175	153 167 87 95 107 121 131 159 172	146 159 83 91 102 116 125 152 164	138 150 79 86 96 110 118 143 155	135 147 77 84 94 107 116 140 152	122 132 70 76 85 97 104 126 137	120 130 68 75 84 95 103 124 134	116 126 67 73 82 93 100 121 131
	0.134 (10 gage)	0.138 0.151 0.164 0.177 0.190 0.216	6 7 8 9 10 12	116 126 141 160 173 209	100 110 122 139 149 180	93 102 114 129 139 167	92 100 112 127 136 164	88 96 107 121 130 157	83 91 101 114 123 148	81 89 99 112 121 145	73 80 89 101 109 131	72 79 88 100 107 129	70 77 86 97 104 126
	0.179 (7 gage)	0.242 0.138 0.151 0.164 0.177 0.190 0.216	6 7 8 9 10	226 126 139 160 184 198	195 107 118 136 160 172 203	181 99 109 126 148 159 189	177 97 107 123 145 156 186	169 92 102 117 138 149 178	160 86 95 110 129 140 168	157 84 93 108 127 137 165	141 76 84 96 113 122 149	139 74 82 95 111 120 146	135 72 80 92 108 117 143
	0.239 (3 gage)	0.216 0.242 0.138 0.151 0.164 0.177 0.190 0.216 0.242	14 6 7 8 9 10 12	234 251 126 139 160 188 204 256 283	203 217 107 118 136 160 173 218 241	202 99 109 126 148 159 201 222	198 97 107 123 145 156 197 217	178 190 92 102 117 138 149 187 207	179 86 95 110 129 140 176 194	176 84 93 108 127 137 172 190	149 159 76 84 96 113 122 154 170	146 156 74 82 95 111 120 151 167	143 152 72 80 92 108 117 162

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.5.1).
 Tabulated lateral design values, Z, are for rolled thread wood screws (see Appendix L) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 10D; dowel bearing strength, F_s, of 61,850 psi for ASTM A653, Grade 33 steel and screw bending yield strengths, F_s, of 100,000 psi for 0.099" ≤ D ≤ 0.142", 90,000 psi for 0.142" < D ≤ 0.177", 80,000 psi for 0.177" < D ≤ 0.236", 70,000 psi for 0.236" < D ≤ 0.273".
 Where the wood screw penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

				PRO	JECT					JECTI	NO.	SHE	ETN
				SUB	JECT								
		ENTY & DESIGN	_	BY _						_ D/	ATE	/	/
Table 1 (Cont.)		for sav (tabula	s, Z, for vn lumber ited later	X, or SINK Single Sh or SCL wi ral design nto the ma	ear (two th ASTM values are	member 653, Grad e calculat	r) Connec le 33 stee ed based	tions ^{1,2,3} I side pla	ite		ii	20	
Side Member Thickness	Nail Diameter	Common Wire Nail Box Nail Sinker Nail	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch (N)	G=0.46 Douglas Fir(S) Hem-Fir(N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(5) Western Cedans Western Woods	G=0.35 Northern Species	
t, in. 0.120	D in, 0.099	Pennyweight 6d 7d	lbs. 90	lbs. 78	lbs. 72	lbs. 71	lbs.	lbs. 64	lbs. 63	lbs. 57	lbs. 56	lbs. 53	-25
(11 gage)	0.113	6d 8d 8d 10d	110 121	95 105	89 97	87 96	83 91	79 86	77 85	70 76	68 75	66 73	
	0.128 0.131 0.135	10d 8d 16d 12d	134 140 147	116 121 127	108 112 118	106 110 116	101 105 110	96 99 104	94 97 102	85 88 92	83 86 91	81 84 88	
	0.135	10d 20d 16d 16d 40d	165	143	133	130	124	117	115	104 121	102 119	99 115	
	0.177 0.192	20d 20d 30d	218 226	188 195	174 181	171 177	163 169	154 159	151 156	136 141	134 138	130 135	8
	0.207 0.225 0.244		244 265 272	210 228 234	194 211 217	191 207 213	182 198 203	172 186 191	168 183 187	151 164 169	149 161 166	145 157 161	
0.134 (10 gage)	0.099	6d 7d 6d 8d 8d	95 116	82 100	76 93	74 92	71 88	66 83	65 81	58 73	56 72	54 69	-
HU-SANC	0.120 0.128 0.131	10d 10d 8d	127 140 146	110 122 126	102 113 117	100 111 115	96 106 110	91 100 104	89 98 102	80 89 92	79 87 90	76 85 88	8
	0.135	16d 12d	153	132	123	121	115	109	102 107 120	96 108	95 106	92 104	
	0.162	16d 40d 20d	199 224	172 194	160 180	157 176	150 169	142 159	139 156	125 141	123 138	120 135	
	0.192 0.207 0.225	30d 40d	232 249 270	200 215 233	186 199 216	182 196 212	174 187 202	164 176 191	161 173 187	145 156 168	143 153 165	139 149 161	PE
0.179	0.244	50d 60d 6d 7d	277 97	239 82	221 76	217 74	207 71	195 66	192 65	173 58	170 56	165 54	WEL-TYPE FASTENERS
(7 gage)	0.113	6d 8d 8d 10d	126	107 121	99 111	97 109	92	86 97	84 95	76	74 83	70	TEN
	0.128 0.131 0.135	10d 8d 16d 12d	161 168 175	137 144 152	126 132 141	124 130 138	118 123 131	111 116 123	108 114 121	97 102 108	94 99 105	90 94 100	ERS
		10d 20d 16d 16d 40d	195 224	170 194	158 180	155 177	148 169	140 160	137 157	123 142	121 140	117 136	1
	0.177		249 256	215 222	200 206	197 203	188 194	178	174	157 162	155 159	151 155	1
	0.207 0.225 0.244	30d 40d 40d 50d 60d	272 292 299	236 252 258	219 234 240	215 230 235	205 220 225	194 207 212	190 203 208	172 184 188	169 180 185	164 176 180	
0.239 (3 gage)	0.099	6d 7d 6d 8d 8d	97 126	82 107	76 99	74 97	71 92	66 86	65 84	58	56 74	54 70	-22
	0.120	10d 10d	142 161	121 137	111 126	109 124	104 118	97 111	95 108	85 97	83 94	79 90	
	0.131 0.135 0.148	8d 16d 12d 10d 20d 16d	169 180 205	144 153 174	132 141 160	130 138 157	123 131 149	116 123 140	114 121 137	102 108 123	99 105 121	94 100 117	
		16d 40d 20d	245 284	209 241	192	188	179 207	168	165	147 170	145 167	140 162	ľ
	0.192	20d 30d	295 310	251 270	231 251	227 246	216 236	202 222	198 217	177 194	174 191	169 185	
	0.207		328	285	265	260	249	235	231	209	205	200	

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Tabulated lateral design values, Z, are for common, box, or sinker steel wire nails (see Appendix Table L4) inserted in side grain with nail axis perpendicular to wood fibers; nail penetration, p, into the main member equal to 10D; dowel bearing strength, F_w, of 61,850 psi for ASTM A653, Grade 33 steel and nail bending yield strengths, F_w, of 100,000 psi for 0.142", 90,000 psi for 0.177", 80,000 psi for 0.236", 70,000 psi for 0.236", D ≤ 0.273".
 Where the nail or spike penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

		PROJECT NO.	SHEET NO.
KICH	PROJECT		
LONGITUDE	SUBJECT		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	 DATE _	/ /

Table 11.3.6A Group Action Factors, Cg[,] for Bolt or Lag Screw Connections with Wood Side Members²

			Fo	or D = 1	" , s = 4	4", E =	1,400,0	00 psi				
A_s/A_m^{-1}	A		_		Nu	mber of	fasten	ers in a	row			
	in. ²	2	3	4	5	6	7	8	9	10	11	12
0.5	5	0.98	0.92	0.84	0.75	0.68	0.61	0.55	0.50	0.45	0.41	0.38
	12	0.99	0.96	0.92	0.87	0.81	0.76	0.70	0.65	0.61	0.57	0.53
	20	0.99	0.98	0.95	0.91	0.87	0.83	0.78	0.74	0.70	0.66	0.62
	28	1.00	0.98	0.96	0.93	0.90	0.87	0.83	0.79	0.76	0.72	0.69
	40	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.84	0.81	0.78	0.75
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.87	0.84	0.82
1	5	1.00	0.97	0.91	0.85	0.78	0.71	0.64	0.59	0.54	0.49	0.45
	12	1.00	0.99	0.96	0.93	0.88	0.84	0.79	0.74	0.70	0.65	0.61
	20	1.00	0.99	0.98	0.95	0.92	0.89	0.86	0.82	0.78	0.75	0.71
	28	1.00	0.99	0.98	0.97	0.94	0.92	0.89	0.86	0.83	0.80	0.77
	40	1.00	1.00	0.99	0.98	0.96	0.94	0.92	0.90	0.87	0.85	0.82
	64	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.91	0.90	0.88
1. Where A/	$A_{m} > 1.0, u$	ise A _m /A _s	and use A,	" instead o	f A _s .							

2. Tabulated group action factors (Cg) are conservative for $D \le 1$ ", $s \le 4$ ", or $E \ge 1,400,000$ psi.

Table 11.3.6B Group Action Factors, Cg, for 4" Split Ring or Shear Plate Connectors with Wood Side Members²

	s = 9", E = 1,400,000 psi												
A_s/A_m^{-1}	A _s ¹	Number of fasteners in a row											
	in. ²	2	3	4	5	6	7	8	9	10	11	12	
0.5	5	0.90	0.73	0.59	0.48	0.41	0.35	0.31	0.27	0.25	0.22	0.20	
	12	0.95	0.83	0.71	0.60	0.52	0.45	0.40	0.36	0.32	0.29	0.27	
	20	0.97	0.88	0.78	0.69	0.60	0.53	0.47	0.43	0.39	0.35	0.32	
	28	0.97	0.91	0.82	0.74	0.66	0.59	0.53	0.48	0.44	0.40	0.37	
	40	0.98	0.93	0.86	0.79	0.72	0.65	0.59	0.54	0.49	0.45	0.42	
	64	0.99	0.95	0.91	0.85	0.79	0.73	0.67	0.62	0.58	0.54	0.50	
1	5	1.00	0.87	0.72	0.59	0.50	0.43	0.38	0.34	0.30	0.28	0.25	
	12	1.00	0.93	0.83	0.72	0.63	0.55	0.48	0.43	0.39	0.36	0.33	
	20	1.00	0.95	0.88	0.79	0.71	0.63	0.57	0.51	0.46	0.42	0.39	
	28	1.00	0.97	0.91	0.83	0.76	0.69	0.62	0.57	0.52	0.47	0.44	
	40	1.00	0.98	0.93	0.87	0.81	0.75	0.69	0.63	0.58	0.54	0.50	
	64	1.00	0.98	0.95	0.91	0.87	0.82	0.77	0.72	0.67	0.62	0.58	

1. Where $A_y/A_m > 1.0$, use A_m/A_s and use A_m instead of A_s .

2. Tabulated group action factors (C_8) are conservative for 2-1/2" split ring connectors, 2-5/8" shear plate connectors, s < 9", or E > 1,400,000 psi.

		PROJECT NO.	SHEET NO.
LONGITUDE ONE TWENTY [®] ENGINEERING & DESIGN	SUBJECT	DATE _	/ /

	F	or D =	1", s =	4", E.	ood = 1,4	400,000	psi, E,	teel = 30	,000,00	0 psi		
A _m /A _s	A _m Number of fasteners in a row											
	in. ²	2	3	4	5	6	7	8	9	10	11	12
12	5	0.97	0.89	0.80	0.70	0.62	0.55	0.49	0.44	0.40	0.37	0.34
	8	0.98	0.93	0.85	0.77	0.70	0.63	0.57	0.52	0.47	0.43	0.40
	16	0.99	0.96	0.92	0.86	0.80	0.75	0.69	0.64	0.60	0.55	0.52
	24	0.99	0.97	0.94	0.90	0.85	0.81	0.76	0.71	0.67	0.63	0.59
	40	1.00	0.98	0.96	0.94	0.90	0.87	0.83	0.79	0.76	0.72	0.69
	64	1.00	0.99	0.98	0.96	0.94	0.91	0.88	0.86	0.83	0.80	0.77
	120	1.00	0.99	0.99	0.98	0.96	0.95	0.93	0.91	0.90	0.87	0.85
	200	1.00	1.00	0.99	0.99	0.98	0.97	0.96	0.95	0.93	0.92	0.90
18	5	0.99	0.93	0.85	0.76	0.68	0.61	0.54	0.49	0.44	0.41	0.37
	8	0.99	0.95	0.90	0.83	0.75	0.69	0.62	0.57	0.52	0.48	0.44
	16	1.00	0.98	0.94	0.90	0.85	0.79	0.74	0.69	0.65	0.60	0.56
	24	1.00	0.98	0.96	0.93	0.89	0.85	0.80	0.76	0.72	0.68	0.64
	40	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.83	0.80	0.77	0.73
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.86	0.83	0.81
	120	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.92	0.90	0.88
	200	1.00	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.94	0.92
24	40	1.00	0.99	0.97	0.95	0.93	0.89	0.86	0.83	0.79	0.76	0.72
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.88	0.85	0.83	0.80
	120	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.91	0.90	0.88
	200	1.00	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.93	0.92
30	40	1.00	0.98	0.96	0.93	0.89	0.85	0.81	0.77	0.73	0.69	0.65
	64	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.83	0.80	0.77	0.73
	120	1.00	0.99	0.99	0.97	0.96	0.94	0.92	0.90	0.88	0.85	0.83
	200	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.94	0.92	0.90	0.89
35	40	0.99	0.97	0.94	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.60
	64	1.00	0.98	0.96	0.94	0.91	0.87	0.84	0.80	0.76	0.73	0.69
	120	1.00	0.99	0.98	0.97	0.95	0.92	0.90	0.88	0.85	0.82	0.79
	200	1.00	0.99	0.99	0.98	0.97	0.95	0.94	0.92	0.90	0.88	0.86
42	40	0.99	0.97	0.93	0.88	0.83	0.78	0.73	0.68	0.63	0.59	0.55
	64	0.99	0.98	0.95	0.92	0.88	0.84	0.80	0.76	0.72	0.68	0.64
	120	1.00	0.99	0.97	0.95	0.93	0.90	0.88	0.85	0.81	0.78	0.75
	200	1.00	0.99	0.98	0.97	0.96	0.94	0.92	0.90	0.88	0.85	0.83
50	40	0.99	0.96	0.91	0.85	0.79	0.74	0.68	0.63	0.58	0.54	0.51
	64	0.99	0.97	0.94	0.90	0.85	0.81	0.76	0.72	0.67	0.63	0.59
	120	1.00	0.98	0.97	0.94	0.91	0.88	0.85	0.81	0.78	0.74	0.71
	200	1.00	0.99	0.98	0.96	0.95	0.92	0.90	0.87	0.85	0.82	0.7

		PROJECT NO.	SHEET NO.
	PROJECT		
LONGITUDE	SUBJECT		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /

		S =	= 9", E	wood = 1	,400,00	0 psi, E	$C_{\text{steel}} = 3$	0,000,0	00 psi			
A _m /A _s	Am	Number of fasteners in a row										
	in. ²	2	3	4	5	6	7	8	9	10	11	12
12	5	0.91	0.75	0.60	0.50	0.42	0.36	0.31	0.28	0.25	0.23	0.21
	8	0.94	0.80	0.67	0.56	0.47	0.41	0.36	0.32	0.29	0.26	0.24
	16	0.96	0.87	0.76	0.66	0.58	0.51	0.45	0.40	0.37	0.33	0.31
	24	0.97	0.90	0.82	0.73	0.64	0.57	0.51	0.46	0.42	0.39	0.35
	40	0.98	0.94	0.87	0.80	0.73	0.66	0.60	0.55	0.50	0.46	0.43
	64	0.99	0.96	0.91	0.86	0.80	0.74	0.69	0.63	0.59	0.55	0.51
	120	0.99	0.98	0.95	0.91	0.87	0.83	0.79	0.74	0.70	0.66	0.63
	200	1.00	0.99	0.97	0.95	0.92	0.89	0.85	0.82	0.79	0.75	0.72
18	5	0.97	0.83	0.68	0.56	0.47	0.41	0.36	0.32	0.28	0.26	0.24
	8	0.98	0.87	0.74	0.62	0.53	0.46	0.40	0.36	0.32	0.30	0.27
	16	0.99	0.92	0.82	0.73	0.64	0.56	0.50	0.45	0.41	0.37	0.34
	24	0.99	0.94	0.87	0.78	0.70	0.63	0.57	0.51	0.47	0.43	0.39
	40	0.99	0.96	0.91	0.85	0.78	0.72	0.66	0.60	0.55	0.51	0.47
	64	1.00	0.97	0.94	0.89	0.84	0.79	0.74	0.69	0.64	0.60	0.56
	120	1.00	0.99	0.97	0.94	0.90	0.87	0.83	0.79	0.75	0.71	0.67
	200	1.00	0.99	0.98	0.96	0.94	0.91	0.89	0.86	0.82	0.79	0.76
24	40	1.00	0.96	0.91	0.84	0.77	0.71	0.65	0.59	0.54	0.50	0.46
	64	1.00	0.98	0.94	0.89	0.84	0.78	0.73	0.68	0.63	0.58	0.54
	120	1.00	0.99	0.96	0.94	0.90	0.86	0.82	0.78	0.74	0.70	0.66
	200	1.00	0.99	0.98	0.96	0.94	0.91	0.88	0.85	0.82	0.78	0.75
30	40	0.99	0.93	0.86	0.78	0.70	0.63	0.57	0.52	0.47	0.43	0.40
	64	0.99	0.96	0.90	0.84	0.78	0.71	0.66	0.60	0.56	0.51	0.48
	120	0.99	0.98	0.94	0.90	0.86	0.81	0.76	0.71	0.67	0.63	0.59
	200	1.00	0.98	0.96	0.94	0.91	0.87	0.83	0.79	0.76	0.72	0.68
35	40	0.98	0.91	0.83	0.74	0.66	0.59	0.53	0.48	0.43	0.40	0.36
	64	0.99	0.94	0.88	0.81	0.73	0.67	0.61	0.56	0.51	0.47	0.43
	120	0.99	0.97	0.93	0.88	0.82	0.77	0.72	0.67	0.62	0.58	0.54
	200	1.00	0.98	0.95	0.92	0.88	0.84	0.80	0.76	0.71	0.68	0.64
42	40	0.97	0.88	0.79	0.69	0.61	0.54	0.48	0.43	0.39	0.36	0.33
	64	0.98	0.92	0.84	0.76	0.69	0.62	0.56	0.51	0.46	0.42	0.39
	120	0.99	0.95	0.90	0.85	0.78	0.72	0.67	0.62	0.57	0.53	0.49
	200	0.99	0.97	0.94	0.90	0.85	0.80	0.76	0.71	0.67	0.62	0.59
50	40	0.95	0.86	0.75	0.65	0.56	0.49	0.44	0.39	0.35	0.32	0.30
	64	0.97	0.90	0.81	0.72	0.64	0.57	0.51	0.46	0.42	0.38	0.35
	120	0.98	0.94	0.88	0.81	0.74	0.68	0.62	0.57	0.52	0.48	0.45
	200	0.99	0.96	0.92	0.87	0.82	0.77	0.71	0.66	0.62	0.58	0.54